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RESUMEN

Este documento (rm-journal-example.tex—última actualización 9 de sep-
tiembre del 2007) proporciona un tutorial breve en el uso de la versión 3 de los
macros de LATEX rmaa y además puede servir cómo modelo para la preparación
de los art́ıculos que se publicarán en la revista principal. Se puede encontrar
más detalles en la gúıa del usuario (authorguide.pdf). Se supone que usted
es ya familiar con los rudimentos del LATEX. En el caso contrario, se dan
algunas referencias convenientes en el authorguide.pdf.

ABSTRACT

This paper investigated two scalar field cosmological models in f(R, T ) gravity
with cosmic transit and varying cosmological constant Λ(t). The cosmological
constant tends to have a tiny positive value at the current epoch. The scalar
field pressure pϕ shows a sign flipping for normal scalar field. For the phantom
field, the scalar potential V (ϕ) is negative and the energy density ρϕ = Ek+V
takes negative values when the equation of state parameter ωϕ is less than
−1. The WEC, ρ =

∑
i ρi ≥ 0 and pi + ρi ≥ 0, is not violated but with

an instability for the second model at late-times. For a scalar field ϕ, The
condition ρϕ + pϕ = ρϕ(1 + ωϕ) = 2Ek ≥ 0 allows for ρϕ < 0 if ωϕ < −1.
The causality and energy conditions have been discussed for both models. The
cosmology in both models was studied using a given function a(t) derived from
the desired cosmic behavior which is the opposite of the traditional view.

Key Words: cosmology:theory — cosmology: parameters — cosmology: dark
energy.

1. INTRODUCTION

Accelerated cosmic expansion (Percival et al. 2001; Stern et al. 2010)
has become a basic motivation for a variety of modified gravitational theories
(Nojiri & Odintsov 2006; Nojiri et al. 2008; Ferraro & Fiorini 2007; Bengochea
& Ferraro 2009; De Felice & Tsujikawa 2010; Alves et al. 2011; Maeder 2017;
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Gagnon & Lesgourgues 2011; Ahmed 2009, 2010; Ahmed & Pradhan 2022;
Ahmed & Kamel 2021). In order to find a satisfactory explanation, an exotic
form of energy with negative pressure, called dark energy, was hypothesized.
Several dynamical scalar fields models of dark energy were introduced such
as the Quintessence, Phantom and Tachyons (Tsujikawa 2013; Kamenshchik
et al. 2001; Caldwell 2002; Chiba et al. 2000; Sen 2002; Arkani-Hamed et al.
2004; Ahmed et al. 2023). For a zero curvature FRW universe driven by a
scalar field ϕ, Einstein’s equations are

3H2 =
1

2
ϕ̇2 + V (ϕ) , Ḣ = −1

2
ϕ̇2 , ϕ̈+ 3Hϕ̇+ V ′ = 0, (1)

With units 8πM−2
Pl = c = 1. H = ȧ

a is the Hubble parameter and V (ϕ) is
the potential. The prime denotes differentiation with respect to ϕ, and the
dots denote differentiation with respect to t. While this nonlinear system is
insoluble in general, a progress can be made through postulating a particular
form of the scale factor a(t) and then get the form of both ϕ(t) and V (ϕ)
(Barrow & Parsons 1995; Ellis & Madsen 1991). In (Banerjee & Pavón 2001),
it has been shown that a minimally coupled scalar field in Brans-Dicke theory
leads to an accelerating universe. A power function forms of the scale factor
a and the scalar field ϕ were assumed as

a(t) = a1t
α , ϕ(t) = ϕ1t

β , (2)

with a1, ϕ1, α and β are constants. An accelerated expansion was also achieved
in a modified Brans-Dicke theory through considering the follwoing power-law
form of both a and ϕ (Bertolami & Martins 2000).

a(t) = a0

(
t

t0

)α

, ϕ(t) = ϕ0

(
t

t0

)β

. (3)

Cosmology in the scalar-tensor f(R, T ) gravity has been studied in (Gonçalves
et al. 2022) where three particular forms of a(t) have been used.

1.1. Negative potentials and energy densities

The case of negative potential cosmologies has become interesting af-
ter the prediction of Ads spaces in string theory and particle physics. Negative
potentials also exist in ekpyrotic and cyclic cosmological models in which the
universe goes from a contracting to an accelerating phase (Steinhardt & Turok
2002; Khoury et al. 2001). They are commonly predicted in particle physics,
supergravity and string theory where the general vacuum of supergravity has
a negative potential. It has also been suggested that negative potentials lead
to an explanation of the cosmological scale in terms of a high energy scale
such as the supersymmetry breaking scale or the electroweak scale (Garriga
& Vilenkin 2000). A detailed discussion of scalar field cosmology with negative
potentials were carried out in (Felder et al. 2002). The effect of negative en-
ergy densities on classical FRW cosmology has been investigated in (Nemiroff
et al. 2015) where the total energy density can be expanded as

ρ =

∞∑
n=−∞

ρ+n a
−n +

∞∑
m=−∞

ρ−ma−m, (4)
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where ρ+n is the familiar positive energy density and ρ−m is the negative cos-
mological energy density. The cosmic evolution with negative energy densities
was also examined in (Saharian et al. 2022) where vacuum polarization has
been mentioned as an example for a gravitational source with ρ < 0 that may
have played a significant role in early cosmic expansion.

An interesting study was carried out in (De La Macorra & German
2004) where the equation of state parameter is negative ( ωϕ = pϕ/ρϕ < −1 )
with no violation of the weak energy condition (ρ =

∑
i ρi ≥ 0 & pi + ρi ≥ 0)

which requires a negative potential V (ϕ) < 0. It has been shown that ρϕ =
1
2 ϕ̇

2 + V (ϕ) becomes negative with ωϕ < −1, the negative ρϕ leads to a small
value of the cosmological constant. However, while cosmic expansion exists in
such scenario, the negative potential V leads to a collapsing universe.

The classical energy conditions are “the null energy condition (NEC)
ρ + p ≥ 0; weak energy condition (WEC) ρ ≥ 0, ρ + p ≥ 0; strong energy
condition (SEC) ρ + 3p ≥ 0 and dominant energy condition (DEC) ρ ≥ |p|”.
Since the SEC implies that gravity should always be attractive, this condi-
tion fails in the accelerating and inflation epochs (Visser 1997a,b). As was
mentioned in (Barceló et al. 2002), even the simplest scalar field theory we
can write down violates the SEC. The NEC is the most fundamental energy
condition on which the singularity theorems, and other key results, are based
(Alexandre & Polonyi 2021). If the NEC is violated, all other point-wise en-
ergy conditions (ECs) are automatically violated. A very useful discussion
about the validity of classical linear ECs was given in (Barceló et al. 2002)
where it has been shown that these classical conditions can not be valid in
general situations. The scalar field potential V (ϕ) is restricted by the ECs
where the scalar field ϕ ( with ρϕ = 1

2 ϕ̇
2+V (ϕ) & pϕ = 1

2 ϕ̇
2−V (ϕ) ) satisfies

the NEC for any V (ϕ), the WEC if and only if V (ϕ) ≥ − 1
2 ϕ̇

2, the DEC if and

only if V (ϕ) ≥ 0, the SEC if and only if V (ϕ) ≤ ϕ̇2. The detailed proof of
this theorem can be found in (Westmoreland 2013).

1.2. Λ(t) models

A new model for the time-dependent cosmological constant Λ(t) was
proposed in (Lopez & Nanopoulos 1996) using the following ansatz

Λ =
ΛPl

(t/tPl)
2 ∝ 1

t2
, (5)

Λ starts at the Planck time as ΛPl =∼ M2
Pl and leads to the value Λ0 ∼

10−120M2
Pl for the current epoch. The decay of Λ(t) during inflation and as

Bose condensate evaporation was studied in (Dymnikova & Khlopov 2001,
2000). Other models for Λ(t) have been suggested in (Basilakos et al. 2009;
Pan 2018; Oikonomou et al. 2017; Ahmed & Alamri 2018, 2019a). The fol-
lowing ansatz was first introduced in (Basilakos et al. 2009) where a variety
of cosmologically relevant observations were used to put strict constraints on
Λ(t) models

Λ(H) = λ+ αH + 3βH2, (6)
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where H is the Hubble parameter, λ, α and β are constants. It has been found
in (Pan 2018; Basilakos et al. 2013; Gómez-Valent et al. 2015; Gómez-Valent
& Solà 2015) that the zero value of λ doesn’t agree with observations, while
λ ̸= 0 behaves like ΛCDM model at late-time. Examples of varying Λ models
in terms of the Hubble parameter H are (Pan 2018)

Λ(H) = βH + 3H2 + δHn, n ∈ R− {0, 1} , (7)

Λ(H, Ḣ, Ḧ) = α+ βH + δH2 + µḢ + νḦ. (8)

A generalized holographic dark energy model where the effective cosmological
constant depends on H and its derivatives were proposed in (Nojiri et al. 2021,
2020, 2022a).

1.3. f(R, T ) modified gravity

The action of f(R, T ) modified gravity is given as (Harko et al. 2011)

S =

∫ (
f(R, T )

16πG
+ Lm

)√
−g d4x, (9)

where Lm is the matter Lagrangian density. f(R, T ) is an arbitrary function
of the Ricci scalar R and the trace T of the energy-momentum tensor Tµν

defined as

Tµν = gµνLm − 2
∂Lm

∂gµν
. (10)

Varying the action (9) gives

fR(R, T )Rµν − 1

2
f(R, T )gµν + (gµν3−∇µ∇ν)fR(R, T ) (11)

= 8πTµν − fT (R, T )Tµν − fT (R, T )Θµν ,

where 3 = ∇i∇i, fR(R, T ) = ∂f(R,T )
∂R , fT (R, T ) = ∂f(R,T )

∂T and ∇i denotes
the covariant derivative. Θµν is given by

Θµν = −2Tµν + gµνLm − 2gαβ
∂2Lm

∂gµν∂gαβ
. (12)

The cosmological equations for f(R, T ) = R + 2h(T ) with cosmological con-
stant Λ considering a scalar field ϕ coupled to gravity have been given in
(Aygün et al. 2018) as

2ä

a
+

ȧ2

a2
= 4πϵϕ̇2 − 8πV (ϕ) + µϵϕ̇2 − 4µV (ϕ)− Λ, (13)

3ȧ2

a2
= −4πϵϕ̇2 − 8πV (ϕ)− µϵϕ̇2 − 4µV (ϕ)− Λ, (14)

where h(T ) = µT and µ is a constant. ϵ = ±1 corresponding to normal
and phantom scalar fields respectively. In the current work, two cosmological
models in modified f(R, T ) gravity were investigated using a given scale factor
a(t) deduced from the desired cosmic behavior which is the opposite of the
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conventional viewpoint. Such ad hoc approach to the cosmic scale factor and
cosmological scalar fields was widely used by many authors in various theories
(Ellis & Madsen 1991; Chervon et al. 1997; Sen & Sethi 2002; Maharaj et al.
2017; Silva & Santos 2013; Ahmed & Alamri 2019b; Sazhin & Sazhina 2016;
Ahmed et al. 2020; Ahmed 2020; Ahmed & Kamel 2021; Ahmed & Pradhan
2020; Nojiri et al. 2022b). We will make use of the following hyperbolic and
hybrid scale factors:

a(t) = A sinh
1
n (ηt) , a(t) = a1t

α1eβ1t, (15)

Where A, η, n, a1 > 0, α1 ≥ 0 and β1 ≥ 0 are constants. The first scale factor
generates a class of accelerating models for n > 1, the models also exhibit a
phase transition from the early decelerating epoch to the present accelerating
era in a good agreement with recent observations. The second hybrid ansatz is
a mixture of power-law and exponential-law cosmologies, and can be regarded
as a generalization to each of them. The power-law cosmology can be obtained
for β1 = 0, and the exponential-law cosmology can be obtained for α1 = 0.
New cosmologies can be explored for α1 > 0 and β1 > 0. A generalized form
of the hybrid scale factor has been proposed in (Nojiri et al. 2022b; Odintsov
et al. 2021) to unify the cosmic evolution of the universe from a non-singular
bounce to the viable dark energy

a(t) =

[
1 + a0

(
t

t0

)2
] 1

3(1+ω)

exp

[
1

(α− 1)

(
ts − t

t0

)1−α
]
, (16)

where ω, α and ts are various parameters. Setting t0 = 1 billion years, this
can be re-written as the product of two scale factors

a(t) =
[
1 + a0t

2
] 1

3(1+ω) × exp

[
1

(α− 1)
(ts − t)

1−α

]
. (17)

In the current work, we are going to use the ansatz (6) for the time varying
cosmological constant which which leads to a very tiny positive value of Λ at
the current epoch as suggested by observations (Perlmutter et al. 1999; Tonry
et al. 2003).

2. MODEL 1

Starting with the hyperbolic solution in (15), which gives the de-
sired behavior of the deceleration and jerk parameters, we obtain the Hubble,
deceleration, and jerk parameters as:

H =
η

n
coth(ηt), q = − äa

ȧ2
=

− cosh2(ηt) + n

cosh2(ηt)
, j =

...
a

aH3
= 1 +

2n2 − 3n

cosh2(ηt)
.

(18)
In order to solve the system of equations (13) and (14) for the scalar field
and the potential, we utilize the hyperbolic scale factor in (15) along with the
time-dependent anstaz for the cosmological constant (6). Then, we will have
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a system of two equations in two unknowns which we have solved using Maple
software and obtained

ϕ(t) =
∓ ln(eηt + 1)± ln(eηt − 1)√

−2ϵ(4π + µ)
+ ϕ0, (19)

V (t) = −
(
η2(1 + 3β) coth2(ηt) + 2ηα coth(ηt) + 2(η2 + 4λ)

)
16(2π + µ)

, (20)

V (ϕ) = −
(
(3β + 1) η2χ2 + 4ηαχ+ 2η2(3β + 5)

)
64(2π + µ)

−
(
16λ+ 4ηαχ−1 + η2χ−2(3β + 1)

)
64(2π + µ)

(21)

Where χ ≡ e(ϕ0−ϕ)
√

−2ϵ(4π+µ) and we have used t(ϕ) = 1
η ln(∓ 1+χ

χ−1 ) to get the

expression for V (ϕ). The expression for ϕ(t) shows that ϵ can be −1 provided
that (4π + µ) > 0, and it can be +1 provided that (4π + µ) < 0. Plotting
t(ϕ) leads to same graph for both signs in (Sen 2002). We also obtain same
expressions for V (ϕ) (Ahmed et al. 2023), energy density ρ and pressure p
for both ϕ solutions. Actually, Figure1(g) shows that both solutions for ϕ,
although they have a different start, unite in one solution. We can use ϕ0 = 0
without loss of generality. Recalling that ρϕ = Ek + V and pϕ = Ek − V we
obtain

pϕ(t) = − η2e2ηt

ϵ(4π + µ)(eηt + 1)2(eηt − 1)2
− V (t),

ρϕ(t) = − η2e2ηt

ϵ(4π + µ)(eηt + 1)2(eηt − 1)2
+ V (t).

(22)

The evolution of the cosmological constant in this work agrees with obser-
vations where it has a very tiny positive value at the current epoch (Figure
1(c)). The expressions for the parameters q, j and the cosmological constant
in equation (6) are all independent of ϵ. The rest of parameters are all plotted
for ϵ = ±1. For ϵ = +1, which corresponds to normal scalar field, the scalar
field pressure pϕ changes sign from positive to negative. We can also see that
V (ϕ), V (t) and ρϕ are all positive where both V (t) and ρϕ tend to ∞ as t → 0.
For ϵ = −1, which corresponds to phantom scalar field, the pressure pϕ > 0
all the time while ρϕ takes negative values when ωϕ < −1 with a negative
scalar potential V . In the literature, it is known that the vacuum phantom
energy has some unusual physical properties such as the increasing vacuum
energy density, violation of the DEC ρ + p < 0 and the superluminal sound
speed (González-Dı́az 2004).

According to the WEC, the total energy density and pressure should
follow the inequalities ρ+p = ρ(1+ω) ≥ 0 and ρ ≥ 0. For a scalar field ϕ, The
condition ρϕ+pϕ = ρϕ(1+ωϕ) = 2Ek ≥ 0 allows for ρϕ < 0 if ωϕ < −1 as long
as the total energy density ρ ≥ 0 with the total equation of state parameter
ω > −1. In general, the phantom energy doesn’t obey the WEC where it
has ρph > 0 but ρph + pph = ρph(1 + ωph) = 2Ek < 0 which means that the
phantom field has a negative (noncanonical) kinetic term (De La Macorra &
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German 2004). Testing the classical energy conditions (Visser 1997b) shows
that both the null and the dominant are satisfied all the time. The highly
restrictive SEC ρ + 3p ≥ 0 is violated as expected where we have a source
of repulsive gravity represented by the negative pressure which can accelerate
cosmic expansion. Because the strong condition implies that gravity should
always be attractive, it’s expected to be violated during any accelerating epoch
dominated by a repulsive gravity effect such as cosmic inflation. In addition
to the ECs, the sound speed causality condition 0 ≤ dp

dρ ≤ 1 is satisfied only
for ϵ = +1.

The possible values of the parameters in the Figures are restricted
by observations where the theoretical model should predict the same behavior
obtained by observations. For that reason, we have to fine-tune the param-
eters’ values to agree with observational results. We have taken n = 2 as it
allows for a decelerating-accelerating cosmic transit and also allows the jerk
parameter j to approaches unity at late-times in an agreement with the stan-
dard ΛCDM model. The constants A, η, and the integration constant ϕ0 are
arbitrary and we have chosen the values 0.1, 1 and 0 respectively without loss
of generality. The value of the constant µ has been adjusted such that the
quantity under the quadratic root in (20) is always positive for both normal
and phantom fields. If we choose µ = 15, then (4π + µ) > 0 for the normal
field where ϵ = +1. For the phantom field with ϵ = −1, we choose µ = −15
so (4π + µ) < 0 and then −2ϵ(4π + µ) > 0. As we have indicated in section
1.2, the zero value of λ doesn’t agree with observations while λ ̸= 0 behaves
like ΛCDM model at late-time. Based on this, we have chosen the non-zero
value 0.1 for λ, β and α.
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(a) q (b) j (c) Λ(t)

(d) pϕ (e) ρϕ (f) ωϕ(t)

(g) ϕ(t) (h) V (t) (i) V (ϕ)

Fig. 1. The hyperbolic solution: (a) The deceleration parameter q shows a
decelerating-accelerating cosmic transit. (b) The jerk parameter approaches unity
at late-times where the model tends to a flat ΛCDM model. (c) The cosmologi-
cal constant reaches a very tiny positive value at the current epoch. (d ), (e) &
(f) show pϕ, ρϕ and ωϕ for ϵ = ±1. For the phantom case, the energy density
ρϕ = Ek + V < 0 when ωϕ < −1. (g) The two solutions of ϕ(t) obtained in (Sen
2002). (h) The scalar potential evolution with time. (g) scalar potential V verses ϕ
. Here n = 2, η = 1, ϕ0 = 0, A = λ = β = α = 0.1, µ = 15 for ϵ = −1 and −15 for
ϵ = 1.
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(a) ϵ = +1 (b) ϵ = −1 (c) dp/dt

Fig. 2. ECs and sound speed for the hyperbolic model. Superluminal sound speed
for the phantom field.

3. MODEL 2

Considering the second hybrid scale factor in (15), which also leads
to the desired behavior of both q and j (Ahmed 2020), we get the expressions
for H, q and j as:

H = β1 +
α1

t
, q =

α1

(β1t+ α1)2
− 1,

j =
α1

3 + (3β t− 3)α1
2 +

(
3β2t2 − 3β t+ 2

)
α1 + β3t3

(β t+ α1)
3 .

(23)

For the scalar field and the potential, making use of (6), we get

ϕ(t) = ±
√

−ϵ(4π + µ)α1 ln t

ϵ(4π + µ)
+ C1, (24)

V (t) =

(
3β2

1(β0 + 1) + α0β1 + λ0

)
t2 + (6α1β1 (β0 + 1) + α0α1) t

−4(µ+ 2π)t2

+
3α2

1 (β0 + 1) + α1

−4(µ+ 2π)t2

(25)

V (ϕ) =
3
(
β2
1 + α2

1

)
(β0 + 1) + α0β1 + ξ−1α1 (6β0β1 + α0 + 6β1)

−4(µ+ 2π)

+
λ0 − α1

−4(µ+ 2π)

(26)

Where ξ = e
ϵ(|C1−ϕ)(4µ+π)√

−ϵα1(4µ+π) = t(ϕ). Plotting t(ϕ) leads to same graph for both
signs. Also, both solutions for ϕ gives the same expressions for ρ and p as

p(t) =
−α1

2ϵ(4π + µ)t2
− V (t) , ρ(t) =

−α1

2ϵ(4π + µ)t2
+ V (t). (27)

In comparison to the first hyperbolic model, Similar behavior has been ob-
tained for different parameters in the hybrid model. For ϵ = +1, pϕ changes
sign from positive to negative indicating a cosmic transit. V (ϕ), V (t) and ρϕ
are > 0 where both V (t) and ρϕ → ∞ as t → 0. For ϵ = −1, pϕ is always
positive while ρϕ takes negative values when ωϕ < −1 with a negative scalar
potential V .



10

(a) q (b) j (c) Λ(t)

(d) pϕ (e) ρϕ (f) ωϕ(t)

(g) ϕ(t) (h) V (t) (i) V (ϕ)

Fig. 3. The second model: (a) A decelerating-accelerating cosmic transit. (b) The
jerk parameter j = 1 at late-times. (c) The cosmological constant reaches a very tiny
positive value at the current epoch. (d), (e), & (f) show pϕ, ρϕ and ωϕ for ϵ = ±1. For
the phantom case, the energy density ρϕ < 0 when ωϕ < −1. (g) The two solutions of
ϕ(t) obtained in (Sen 2002). (h) The scalar potential evolution with time. (g) scalar
potential V verses ϕ . Here α1 = β1 = 0.5, η = 1, ϕ0 = 0, A = λ = β = α = 0.1,
µ = 15 for ϵ = −1 and −15 for ϵ = 1.
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(a) ϵ = +1 (b) ϵ = −1 (c) dp/dt

Fig. 4. ECs and sound speed for the hybrid model. Negative sound speed for the
phantom field.

In the current work, we argue that the WEC is not violated for the
two models considered with an instability at late-times for the second model
which now can be seen in Figure 4(c). The WEC, asserting that the total
energy density ρ must be non-negative, is challenged by the notion that a
negative term in the energy density can coexist if the overall energy density
remains positive. Figure 4(c) shows that the sound speed causality condition
is satisfied only within a specific time interval (for late-times) for a normal
scalar field while it is always violated for the phantom field. The phantom
field, for both the hyperbolic and hybrid models, has a positive pressure pϕ > 0
and a negative scalar potential V (ϕ). Also, Its energy density ρϕ = Ek + V
takes negative values when the equation of state parameter ωϕ < −1. Figure
4(b) shows that pi + ρi ≥ 0 for both normal and phantom fields.

4. CONCLUSION

We revisited the scalar field cosmology in f(R, T ) gravity through
two models. The main points can be summarized as follows:

� The evolution of the deceleration parameter indicates that a decelerating-
accelerating cosmic transit exists in both models . The jerk parameter
also tends to 1 at late-times where the model tends to a flat ΛCDM
model.

� The evolution of the varying cosmological constant in both models shows
that it tends to a tiny positive value at the current epoch.

� The scalar field pressure pϕ in both models shows a sign flipping from
positive to negative for normal scalar field ϵ = +1 , but it’s always
positive for the phantom field ϵ = −1 .

� In both models, the scalar potential V (ϕ) > 0 for ϵ = +1 and < 0 for
ϵ = −1 .

� For the normal field, ρϕ > 0 with no crossing to the phantom divide line
for ωϕ. For the phantom field we have ρϕ < 0 when ωϕ < −1 .
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� Classical energy conditions have been tested for both cases. For the
hyperbolic model, the sound speed causality condition 0 ≤ dp

dρ ≤ 1 is
valid only for ϵ = +1. For the hybrid model, this condition is satisfied
only for a specific interval of time for the normal scalar field.
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Gonçalves, T. B., Rosa, J. L., & Lobo, F. S. 2022, Physical Review D, 105, 064019
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