ASYMMETRY AND CONCENTRATION PARAMETERS FOR DWARF LATE-TYPE SPIRAL GALAXIES

I. Vega-Acevedo¹, A. M. Hidalgo-Gámez¹, and B. E. Miranda-Pérez^{1,2} Draft version: March 27, 2025

RESUMEN

Este trabajo estudia los parámetros de asimetría y concentración en una muestra de galaxias espirales tardías, utilizando imágenes en bandas $V \ y \ R$. La asimetría se calculó para distintos ángulos y radios, mostrando valores bajos (especialmente en regiones internas), sin dependencia sistemática con el ángulo. La concentración presenta valores intermedios entre espirales grandes e irregulares. Analizamos la distribución de estas galaxias en el plano C-A en comparación con espirales normales y enanas. Además, exploramos las correlaciones entre asimetría y tasa de formación estelar, y entre concentración y masa estelar, contrastando nuestros resultados con estudios previos.

ABSTRACT

We analyze the asymmetry and concentration parameters in a sample of latetype spiral galaxies using V and R broadband images. Asymmetry values were computed for different rotation angles and radii, revealing low asymmetry overall, with smaller values in inner regions. No preferred angle significantly affected asymmetry measurements. Concentration indices lie between those of large spirals and irregular galaxies. We compare our sampleas distribution in the C-A plane with other late-type systems (dwarfs and normal spirals). Additionally, we explore correlations between asymmetry and star formation rate, and between concentration and stellar mass, contrasting our results with prior studies.

Key Words: galaxies: dwarf — galaxies: irregular — galaxies: star formation — galaxies: structure — galaxies: photometry

1. GENERAL

Galaxies exhibit a wide variety of forms and their classification is a challenging task. The classical classification method, introduce by Hubble (1936) and later refined by de Vaucouleurs (1959) is based in on morphology. While this method is powerful, it has notable limitatios, particularly its subjectivity, as the classification relies on the observer's judgement (Conselice et al. 2000b). Traditionally, this classification were based on photographic plates images, which are more sensitive to the blue light. Consequently, blue filters are commonly used, as they emphasize star formation events- a particular important factor in late-type galaxies.

¹Departamento de Física, ESFM, Instituto Politécnico Nacional, México

²Departamento de Matemáticas, ESIME, Instituto Politécnico Nacional, México

A new classification scheme was proposed by Conselice et al. (2000a), which relies on three parameters: concentration, asymmetry, and clumpiness, collectively known as the CAS system. While related to morphology, these parameters are defined quantitatively, enabling a more objective classification of galaxies.

As defined by Abraham et al. (1996), symmetry has long been a fundamental aspect of galaxy morphology but has often been overlooked in more detailed studies. Early papers on galaxy morphology, such as those by Curtis (1918) and Hubble (1926)), described galaxies in terms of their symmetry, typically 180° symmetry. Galaxies, in general, are dynamically relaxed systems, leading to a high degree of symmetry (Binney & Tremaine 2008). Indeed, galaxy models often assume a symmetric mass distribution (Carroll & Ostlie 1996). Understanding deviations from symmetry in the light distribution of galaxies can reveal underlying dynamical processes. For instance, galaxies affected by interactions or mergers tend to exhibit significant asymmetries (Conselice et al. 2000b).

Schade et al. (1995) first introduced the quantitative use of asymmetry as a morphological parameter to characterize distant galaxies observed with the Hubble Space Telescope (HST). Subsequent studies by Abraham et al. (1996), Abraham et al. (1996) and van den Bergh et al. (1996) utilized asymmetry to classify distant galaxies within the Hubble Sequence framework broadly.

Concentration, on the other hand, was initially employed by Morgan (1958, 1959) in effort to develop a more refined classification model. More recently, it has been used to explore the central regions of galaxies, uncovering correlations between concentration and properties such as X-ray flux (Pović et al. 2009) and central black hole mass (Graham et al. 2001).

As said, Conselice et al. (2000a) used these three parameters (considering the clumpiness, which is not included in the present investigation) for an alternative classification of galaxies using a sample of galaxies of all morphological types. These parameters are easily determined from direct images in broadband images. Also, they seem to be related to intrinsic properties of galaxies, such as the colour index, (B-V), or the absolute magnitude, M_B (Conselice 2003). In this way, he concluded that such classification can be as useful as the Hubble classification, since galaxies with similar CAS values might have similar properties. In his investigation only two of the galaxies of his sample are classified as Sm (NGC 4861 and NGC 5204), and another two as Sdm. This is not unsual because Sm and dS galaxies are underrepresented in the samples used for the asymmetry determination and they are considered as late-type galaxies in general. And they are expected to have concentration and asymmetry parameters in between those for Sd and irregular galaxies because they have looser spiral arms than other spiral (Sa-Sd), but they are not as disordered as irregular galaxies and their bulges are quite dim, when present.

In this study, we focus on the asymmetry and concentration parameters of a sample of Sm and dS galaxies to determine their proper placement in the C-A diagram. These galaxies have traditionally been located within the late-type galaxy locus (e.g. Conselice 2003), despite the fact that their star formation is not confined to spiral arms but rather extends throughout the entire disk, albeit in a non-homogeneous manner. In fact, H II regions are not uniformly distributed across the galaxy, as observed in other spirals (Magaña-Serrano et al. 2020). Such characteristics could significantly influence the asymmetry and concentration parameters, potentially altering their position in the C-A plane.

We also examine the variations in both asymmetry and concentration parameters depending on the filter used, as well as the effects of rotation angle and radius. In previous studies, only a 180° rotation have been considered, with the exceptions of Conselice et al. (2000b) and Abraham et al. (1996). Notably, most investigations have reported that asymmetry values strongly depend on the rotation angle, with most galaxies appearing nearly symmetrical under a 180° rotation but not at other angles. This effect may be particularly relevant when emission from star-forming regions dominates the total flux in certain bands, such as the *B* band or bluer wavelengths, which is typically the case for Sm and dS galaxies.

Additionally, flux in the red bands is primarily determined by the underlying stellar population, which is more smoothly distributed throughout the disk (Conselice et al. 2000b). While this phenomenon occurs in all starforming galaxies, it may be more pronounced in Sm and dS galaxies due to their smaller size relative to other spiral types but comparatively high star formation rates. Consequently, the observed differences in asymmetry and concentration parameters could be more significant in these galaxies.

Finally, we obtained the dependence of the A and C values with the star formation rate and the stellar mass, respectively and compared them to those obtained for larger galaxies by Conselice (2003) and for tidal dwarf galaxies by Vega-Acevedo & Hidalgo-Gámez (2022).

The manuscript is structured as follows: the §2 comprises a description of the sample of the galaxies studied as well as the data used for the determination of the parameters. In §3, a brief description of the determination of the A and C values is presented while the results, general as well as with different filters, angles and radii are presented in §4. Finally, a discussion on the location of these galaxies in the C-A plane is given on §5 as well as the relationship between the A and C parameters with some other characteristics of the galaxies. Finally, conclusions are given in §6.

2. OBSERVATIONS AND DATA REDUCTION

The observations of the galaxies analyzed in this study were obtained by one of the authors using the 1.5m telescope at the OAN-SPM during two separate observation campaigns: March 7-9 and November 1-4, 2002. During both campaigns, most nights were not entirely photometric due to the presence of high clouds. However, the extinction was low enough to obtain accurate flux measurements.

$Galaxy^1$	Integration $time^2$		SNR^3	$seeing^4$	$Air mass^5$
	R	V		[arcsec]	[mag]
UGCA 5	1200		9.5	1.6	1.730
UGCA 74	1000	1200	9.7	1.8	1.840
UGC 891	1000	1200	8.7	1.5	1.260
UGC 2301	1100	1200	8.8	1.6	1.090
UGC 3775	1200	1200	9.1	1.9	1.120
UGC 5242	1200	1000	10.0	1.9	1.570
UGC 5296	1400	1200	4.1	2.0	1.178
UGC 6205	1600	1200	6.1	1.6	1.049
UGC 6304	1200	1200	4.0	1.7	1.280
UGC 9570	1200	1200	4.5	1.6	1.135
UGC 11820	1200	900	8.0	1.9	1.270
UGC 12212	1000	1200	9.2	1.8	1.010

SAMPLE OF DWARF SPIRAL GALAXIES

Table 1 summarizes the observations for the sample of dwarf spiral galaxies studied in this investigation. Column (1) lists the galaxy name, columns (2) and (3) provide the exposure time for the R and V filters, respectively, column (4) presents the signal-to-noise (S/N) ratio, while column (5) contains the seeing conditions, and column (6) shows the air mass.

Data reduction and calibration were performed using the ESO-MIDAS software following standard procedures (Banse et al. 1983; Warmels 1992). Atmospheric corrections were applied using the tables for San Pedro Mártir Observatory (Schuster & Parrao 2001). Several different standard stars were used for flux calibration.

Figures (1) and (2) display the calibrated V-band images of the galaxies UGC 9570 and UGCA 74, respectively in the V filter.

The intensities in these images are normalized relative to I_0 , which corresponds to the pixel located at the defined central position. The process for determining this central point is detailed in Section 3. To avoid interference with the center determination, which could affect the asymmetry parameter measurements, bright foreground stars were removed and replaced through background emission interpolation.

2.1. Sample description

All the galaxies analyzed in this study were selected from the list of dwarf spiral galaxies compiled by Hidalgo-Gámez (2004), except for UGC 2301, which is a dS candidate. Thus, all of them are classified as dS, although UGCA 74 is categorized as a peculiar galaxy. Four of these galaxies -UGCA

Fig. 1. Reduced image of the galaxy UGC 9570 in the V filter observed at OAN-San Pedro Martir. The intensity in the image is normalized with respect to I_0 (see Section 3).

Fig. 2. Reduced image of the galaxy UGCA 74 in the V filter observed at OAN-San Pedro Martir. The intensity in the image is normalized with respect to I_0 (see Section 3).

TABLE 2

GALAXY SAMPLE

$Galaxy^{(1)}$	$\alpha^{(2)}_{J2000}$	$\beta_{J2000}^{(3)}$	$r_{25}^{(4)}$	D ⁽⁵⁾	$M_B^{(6)}$	$Morphology^{(7)}$
			[kpc]	[Mpc]		
UGCA5	00h18m48.3s	-19d00m28s	9.14	$42.5\pm$	-18.46	SAB(s)m
UGCA74	03h29m31.7s	-17d46m42s	4.5	$20.5\pm$	-18.05	SB(s)c pec
UGC891	01h21m18.9s	+12d24m43s	1.62	$4.86\pm$	-14.28	SABm
UGC2301	$02\mathrm{h}49\mathrm{m}38.2\mathrm{s}$	+38d15m41s			-18	dwarf^*
UGC3775	$07\mathrm{h}15\mathrm{m}52.6\mathrm{s}$	+12d06m54s	7.69	34.1	-16.56	Sm
UGC5242	$09\mathrm{h}47\mathrm{m}05.5\mathrm{s}$	+00d57m51s	6.36	32.4	-17.75	SB(s)m
UGC5296	09h53m11.6s	+58d28m42s	3.65	24.5	-15.54	Sm
UGC6205	$11\mathrm{h}09\mathrm{m}58.3\mathrm{s}$	+46d05m42s	6.37	24.0	-17.13	Sm
UGC6304	11h17m49.1s	+58d21m08s	5.67	28.3	-15.84	Sm
UGC9570	$14\mathrm{h}51\mathrm{m}35.9\mathrm{s}$	+58d57m14s		33.5	-16.22	dS^*
UGC11820	$21\mathrm{h}49\mathrm{m}28.4\mathrm{s}$	+14d13m52s	3.22	11.3	-14.20	Sm
UGC12212	$22\mathrm{h}50\mathrm{m}30.3\mathrm{s}$	+29d08m18s	1.82	8.1	-14.04	Sm

^aColumn (1) is the name of the galaxy, columns (2) y (3) are the right ascension and declination respectively in J2000, column (4) is the mayor axis, the distance of galaxy is in column (5) and column (6) is the absolute magnitude in B, using the most recent distance determination, and column (7) is the morphological classification (de Vaucouleurs et al. 1991; Nilson 1973).

5, UGCA 74, UGC 891, and UGC 5242- are considered barred galaxies (de Vaucouleurs et al. 1991).

Table 2 presents some of the main properties of the galaxies in our sample. Column (1) lists the galaxy name, while columns (2) and (3) provide the right ascension (α) and declination (δ) coordinates. Column (4) shows the inclination. Most of the galaxies are either face-on or have an intermediate inclination, with values ranging from 14° to 56°. Only two galaxies, UGC 891 and UGC 2301, exhibit a high inclination. This is a relevant factor, as lower inclinations facilitate the determination of both asymmetry and concentration parameters. The two highly inclined galaxies remain in our sample to assess the impact of inclination on the measurement of these parameters.

Columns (5), (6), and (7) provide the optical radius, distance, and absolute magnitude (M_B) , respectively. The radii and absolute magnitudes were determined following Hidalgo-Gámez (2004), incorporating the latest distance measurements from NED-NASA. Galactic extinction corrections were applied in these calculations. Finally, the last column presents the morphological classification according to NED-NASA.

With such homogeneous, although small sample it is very interesting to study the asymmetry and concentration parameters and check if dS are located near the spiral galaxies or closer to the locus on irregular ones in the C-Aplane.

3. DETERMINATION OF THE A AND C PARAMETERS

3.1. Where is the center?

To determine both, the asymmetry and the concentration parameter it is necessary to determine the center of the galaxy.

In this investigation, the weighted center (C_w) , defined as the point obtained by weighting the pixel intensities in a specific region, was chosen instead of the photometric center because it can be determined more easily without additional processing. The distance between the weighted center and the photometric center in these galaxies is less than the seeing (Vega-Acevedo 2013). The weighted center, $C_w = (C_{w,x}, C_{w,y})$, was obtained as:

$$C_{w} = (C_{w,x}, C_{w,y}) = \frac{\left(\sum_{i,j} (x_{i}I_{i,j}), \sum_{i,j} (y_{j}I_{i,j})\right)}{I},$$
(1)

where the $I_{i,j}$ is the intensity of each pixel located in (i,j), and x_i, y_j are the coordinates of the pixel (i,j), the $\sum (x_i I_{i,j})$ is the sum of the product between the position in the x coordinate and the intensity in the position (i,j) and $I = \sum_{i,j} I_{i,j}$

The challenge in determining the weighted center, as previously mentioned, is the variation in the average intensity (and consequently, in the coordinates of the weighted center) caused by the presence of field stars near the galaxy. To mitigate this effect, these stars must be masked to eliminate their contribution.

In addition to determining the weighted center, it is also necessary to define the galaxy's size for the calculation of the asymmetry (A) parameter. Following Conselice (2003), we adopted the Petrosian radius. To determine this radius, the surface brightness profile must be obtained (Graham et al. 2005), which in this study was modeled using a Sérsic law latter (Sérsic et al. 1968).

3.2. Asymmetry

The asymmetry parameter (A) quantifies the irregularity or unevenness of a galaxy's brightness and structure across different regions. It measures how much the galaxy's shape changes under a specific rotation. Asymmetry can provide valuable insights into past dynamical events, such as galactic mergers or interactions with other galaxies, as interacting galaxies typically exhibit higher asymmetry levels. To determine this parameter, the luminosity distribution in opposite regions of the galaxy is compared to identify imbalances in the light distribution. In this work we made it as follows: Firstly, the original image, Ima, is rotated by an angle, θ , counterclockwise, considering the weighted center as the rotation point. This rotated image will be called *Rot*. Then, the following operation is made with the images:

$$A = \left| \frac{Rot - Ima}{Ima} \right| \tag{2}$$

Finally, the intensity of a region, centered at the weighted center and with a radii of the r_{25} , is measured at the image obtained from equation 2, which will be defined as parameter A (Abraham et al. 1996). With such definition, the parameter takes values from 0 to 1, where 0 means a symmetric system under that rotation and 1 is a completely asymmetric one. In general, spiral galaxies are quite symmetric for a 180° rotation but they are asymmetric for 90° or 45° one. Elliptical galaxies are very symmetrical for most of the angles, with asymmetry values between 0.1 to 0.3. On the contrary, irregular galaxies have average values of 0.4 - 0.5 under all the angles (Conselice et al. 2000b; Abraham et al. 1996).

In general, the asymmetry parameter is determined by using a single angle, mostly 180°, and a fix size for every galaxy (Conselice 2003) although some authors used several radii, filters and angles to determine how this parameter changes. Hernández-Toledo et al. (2005) measured CAS parameters in BVRI bands for a sample of 66 galaxies and found that the differences in CAS parameters for paired galaxies from the B to I bands is, on average, small. Also, only a single size of the galaxy is considered although Conselice et al. (200b) concluded that the internal part of the galaxies might be more symmetrical.

3.3. Concentration

The concentration, C, of a galaxy refers to the relationship between the luminosity in its central core and the total luminosity along its extension. This parameter is valuable in distinguishing between different types of galaxies, especially between ellipticals and spirals. Higher values of C indicates that a larger amount of light in a galaxy is contained within a central region (e.g., Bershady et al. 2000; Graham et al. 2001, 2005). Elliptical galaxies tend to have a higher concentration, since most of their light is centered in the nucleus, while spirals, with their arms extended, have a lower value. Concentration is calculated as the ratio of two radii containing a specific percentage of the galaxy total luminosity. In this work, we use the definition by Conselice (2003) which quantify how much light is at the center of a galaxy as opposed to its outer parts i.e.

$$C = 5log\left(\frac{r_{80}}{r_{20}}\right),\tag{3}$$

In this equation, r_{80} and r_{20} are the radii enclosing the 80% and 20% of the total flux, respectively. In order to obtain these radii, a setting to the Petrosian-type brightness profile of the galaxy under study is made and the integral of the profiles is determined to obtain those radii which have the 20% and 80% of the total flux.

4. RESULTS

4.1. Asymmetry for dwarf spiral galaxies

In this investigation, we are going to use three different angles $(45^{\circ}, 90^{\circ}, and 180^{\circ})$, two filters (V and R) and two radii (r_p and $2r_p$) in the determination of the asymmetry. These configurations are employed to evaluate whether the conclusions drawn for large galaxies -such as lower asymmetry values in the inner regions, higher symmetry under a 180° rotation, and minimal differences between filters- are consistent for smaller galaxies. The motivation for this comparison lies in the distinct structural differences: large galaxies typically exhibit a canonical spiral structure, whereas the smaller galaxies in our sample display a looser spiral pattern with a more disordered light distribution.

These values of the asymmetry parameter for the sample are listed in Table 3, in filters V and R at radius $r = r_p$ and $r = 2r_p$. The column (1) has the galaxy name, columns (2), (3) and (4) are the values for rotation angle 45° , 90° and 180° in filter V, and columns (5), (6) and (7) are the ones for rotation angle 45° , 90° and 180° in filter R. The top part of this table shows the A values determined for a radius r_p , which considered the innermost part of the galaxy while the values at the bottom correspond to $r = 2r_p$, which included most of the total galaxy.

4.1.1. Asymmetry at different filters

As previously mentioned, the R filter is typically used for asymmetry determination because the luminosity from K-type stars, which dominate this filter, is assumed to be virialized, following a more symmetric and homogeneous distribution (Conselice 2003). However, for star-forming galaxies, this assumption may not be entirely appropriate. If the star formation rate (hereafter SFR) is sufficiently high, the *R*-filter emission may be contaminated by H α line emission at 6562Å, originating from HII regions. Additionally, the scattered distribution and high luminosity of HII regions in Sm and dS galaxies could affect the weighted center determination, subsequently influencing the asymmetry value. Since most of the galaxies in our sample are star-forming (Magaña-Serrano et al. 2020), a comparison with a bluer filter (V) allows us to assess the significance of these effects.

According to Table 3, no significant differences in asymmetry values are observed between the two filters. A similar conclusion can be drawn from Figure 3, which plots the asymmetry values obtained with the R filter (y-axis) against those from the V filter (x-axis) for all galaxies in the sample. The plot also includes the 1:1 reference line and the 1σ confidence interval (dotted lines) for the internal regions of the galaxies (r_p) across the three rotation angles used in this study. We focus on r_p because asymmetry values are generally lower in this region, making any differences more likely attributable to filter effects (See Section 4.3). For completeness, a square-root fitting is also shown as a dashed line.

TABLE 3

SUMMARY OF ASYMMETRY

Galaxy		V filter			R filter			
	45^{o}	90^{o}	180^{o}	45^{o}	90^{o}	180^{o}		
	$r = r_p$							
UGCA 5	0.18 ± 0.01	0.23 ± 0.04	0.25 ± 0.04					
UGCA 74	0.19 ± 0.02	0.28 ± 0.01	0.17 ± 0.02	0.21 ± 0.03	0.33 ± 0.02	0.49 ± 0.01		
UGC 891	0.14 ± 0.02	0.18 ± 0.02	0.18 ± 0.02	0.13 ± 0.01	0.15 ± 0.01	0.17 ± 0.01		
UGC 2301	0.2 ± 0.02	0.3 ± 0.01	0.13 ± 0.01	0.18 ± 0.01	0.29 ± 0.01	0.12 ± 0.01		
UGC 3775	0.2 ± 0.01	0.28 ± 0.01	0.32 ± 0.01	0.23 ± 0.01	0.29 ± 0.01	0.32 ± 0.01		
UGC 5242	0.09 ± 0.01	0.13 ± 0.01	0.16 ± 0.01	0.11 ± 0.04	0.14 ± 0.03	0.17 ± 0.03		
UGC 5296	0.12 ± 0.01	0.11 ± 0.01	0.09 ± 0.02	0.16 ± 0.04	0.14 ± 0.05	0.09 ± 0.07		
UGC 6205	0.07 ± 0.02	0.09 ± 0.01	0.07 ± 0.02	0.07 ± 0.01	0.08 ± 0.01	0.07 ± 0.01		
UGC 6304	0.09 ± 0.01	0.11 ± 0.01	0.12 ± 0.01	0.09 ± 0.01	0.12 ± 0.01	0.12 ± 0.01		
UGC 9570	0.07 ± 0.01	0.1 ± 0.01	0.09 ± 0.01	0.07 ± 0.04	0.08 ± 0.04	0.08 ± 0.04		
UGC 11820	0.13 ± 0.02	0.15 ± 0.01	0.15 ± 0.01	0.10 ± 0.04	0.11 ± 0.03	0.10 ± 0.03		
UGC 12212	0.12 ± 0.02	0.18 ± 0.01	0.22 ± 0.01	0.09 ± 0.04	0.14 ± 0.03	0.17 ± 0.02		
			r=	$=2r_p$				
UGCA 5	0.25 ± 0.01	0.32 ± 0.01	0.37 ± 0.01		•••	•••		
UGCA 74	0.36 ± 0.02	0.5 ± 0.02	0.34 ± 0.02	0.35 ± 0.01	0.51 ± 0.04	0.39 ± 0.04		
UGC 891	0.18 ± 0.05	0.22 ± 0.04	0.18 ± 0.05	0.14 ± 0.04	0.17 ± 0.03	0.15 ± 0.03		
UGC 2301	0.15 ± 0.02	0.32 ± 0.02	0.13 ± 0.02	0.13 ± 0.01	0.29 ± 0.01	0.12 ± 0.01		
UGC 3775	0.28 ± 0.01	0.4 ± 0.01	0.49 ± 0.01	0.29 ± 0.01	0.41 ± 0.01	0.48 ± 0.01		
UGC 5242	0.13 ± 0.04	0.17 ± 0.03	0.16 ± 0.03	0.15 ± 0.02	0.21 ± 0.01	0.19 ± 0.01		
UGC 5296	0.11 ± 0.04	0.14 ± 0.03	0.13 ± 0.04	0.12 ± 0.02	0.15 ± 0.01	0.14 ± 0.01		
UGC 6205	0.11 ± 0.03	0.14 ± 0.02	0.08 ± 0.04	0.1 ± 0.01	0.13 ± 0.01	0.08 ± 0.02		
UGC 6304	0.11 ± 0.02	0.13 ± 0.02	0.12 ± 0.02	0.11 ± 0.03	0.15 ± 0.02	0.14 ± 0.02		
UGC 9570	0.08 ± 0.03	0.11 ± 0.03	0.11 ± 0.02	0.08 ± 0.01	0.1 ± 0.01	0.1 ± 0.01		
UGC 11820	0.15 ± 0.01	0.18 ± 0.01	0.21 ± 0.01	0.19 ± 0.02	0.20 ± 0.01	0.22 ± 0.01		
UGC 12212	0.17 ± 0.02	0.24 ± 0.01	0.3 ± 0.01	0.16 ± 0.01	0.23 ± 0.01	0.29 ± 0.01		

Top: Asymmetry for a $r = r_p$.

Bottom: Asymmetry for a $r = 2r_p$.

At 90° and 180° there are four galaxies which do not fit into the 1σ . As one of the source of asymmetry might be the distribution of the H II regions, those galaxies with the largest SFR might be those with the largest asymmetry. The galaxy with the largest differences in the A values between the filters in our sample, UGCA 74, is also the galaxy with the highest SFR (0.186M_{\odot}yr⁻¹, Hodge & Kennicutt 1983).

These results are predictable because both filters have very close central

wavelengths so the light in both are dominated by a similar stellar population, specially if the star formation rates are low. And they are very similar to those obtained by Hernández-Toledo et al. (2005) and Conselice et al. (2000b), where the differences in the asymmetry between the values in the blue (B, g) and red (R, r) filters are smaller than 0.1.

4.1.2. Asymmetry at different radii

On the contrary to intermediate (Sbc, Sc, Sd) type of galaxies, where the H II regions are preferably located along the spiral arms, the regions of star formation in late-type are disorderly distributed all along the galaxy (See e.g. Magaña-Serrano et al. (2020); Roye & Hunter (2000)). Moreover, Conselice et al. (2000b) concluded that the internal part of galaxies might be more symmetrical because the spiral pattern is more clear. Another reason is that, in general, in normal spiral galaxies the number of H II regions is smaller in the internal part (Hodge & Kennicutt 1983). Then, a difference in the asymmetry values is expected between the internal and external part for late-type galaxies.

This is clearly seen in Figure 4, where the A values in the external parts $(2r_p)$ are shown vs. the internal parts (r_p) in R filter. Along with the datapoints, the 1:1 and the 1σ lines are shown for the three angles studied here, as well as the squared-root fitting (dashed line).

About half of the galaxies of the sample have differences in the A values larger than 1σ . It is interesting that galaxies with low asymmetry values as UGC 11820 or UGC 5242, show large differences between their inner and the outer parts. Three out of the four barred galaxies are among these galaxies with large differences with the radius. The other one, UGC 891, has a large inclination which might cover up the differences. Actually, the two galaxies with the largest inclination have the smallest differences in A between r_p and $2r_p$ when a average values in filter and angle is considered for every radius.

Another reason for the increase of the A parameter with the radius might be the interactions, present of past, suffered by the galaxies. The only peculiar galaxy in our sample, which might be in interaction, is UGCA 74 which shows large differences and also has the largest SFR, as already said. Therefore, it can be concluded that barred galaxies or those in interaction or with an intense event of star formation are expected to show large differences in the asymmetry between their inner and their outer parts.

4.1.3. Asymmetry at different angles

Classical spiral, two-arm galaxies have a low values of the asymmetry for a 180° rotation (Conselice et al. 2000b). On the contrary, late-type spiral galaxies, have, in many cases, no clear spiral pattern, sometimes with a odd number of arms. Therefore, differences in the A parameter might be related with the spiral structure of the galaxies. Both, Abraham et al. (1996) and Conselice et al. (2000b) found that the asymmetry strongly depends on the

Fig. 3. Comparison of asymmetry values for the galaxies in the sample in filter R versus filter V at $r = r_p$. The top panel (a) is for a rotation angle of 45° , the middle panel, (b), for a 90° angle and the bottom one, (c), for a 180° angle.

Fig. 4. Comparison of the asymmetry values between the $2r_p$ versus $1r_p$ in filter R. The top panel, (a), is for a rotation angle of 45° , the middel one, (b), shows values for a rotation angle of 90° and the bottom one, (c), is for a rotation angle of 180° .

angle of rotation if the galaxy was very asymmetric. Finally, they concluded that the 180° rotation was always the angle that gave the lowest asymmetry value, and such angles might indicates the existence of a axis of symmetry (Hernández-Toledo et al. 2005).

The asymmetry values for these three angles are listed in Table 3 for the different filters and radii and they are plotted in Figure 5, with the 1:1 and 1σ and the squared fitting lines. Only the internal values of the asymmetry are considered as well as the V filter. Again, about half of the galaxies in the sample are not enclosed by the 1σ lines but only four of them have differences larger than 2σ : UGCA 74, UGC 2301, UGC 3775 and UGC 12212. The smaller differences are present for asymmetries lower that 0.2 independently of which rotation angles are considered (see Figure 5). Conselice et al. (2000b) have much larger differences in the asymmetry parameter for the majority of the galaxies in their sample.

Conselice et al. (2000b) also concluded that a 180° rotation is particularly sensitive to interactions, whereas higher asymmetry (A) values at 90° or 45° are primarily associated with star formation. Furthermore, asymmetry at 180° correlates with morphological type, interactions, and color index (B - V), while the maximum asymmetry at 90° is related to the axis ratio b/a; specifically, larger asymmetry values correspond to larger axis ratios.

Finally, the minima of the asymmetry parameter across the full rotation range $(1^{\circ} \text{ to } 360^{\circ})$ may be linked to the number of spiral arms. In particular, a minimum at 90° suggests the presence of a four-arm structure.

According to Table 3 (upper half, columns 5, 6 and 7), only three galaxies have a maximum of the asymmetry at 180° (UGCA 74, UGC 3775 and UGC 12212) however, only one of these galaxies might be in interaction and their only morphological difference is that UGCA 74 is a barred galaxy. Its colour, of 0.49, is much larger to the value expected from its asymmetry, according to figure 10 in Conselice et al. (2000b). Two of these galaxies have a similar b/a axis ratio of 0.12-0.13 while there is no information on the third. UGCA 74 have a much larger asymmetry than is expected from its low axis ratio, according to figure 13 in Conselice et al. (2000b).

Only one galaxy has the maximum at 90° (UGC 2301) with a axis ratio of 0.4. Finally, none of the galaxies in our sample have a maximum at 45° . Moreover, the rest of the galaxies of the sample have very similar values for all the angles here studied. It is interesting to notice that five of the galaxies show a increment of the asymmetry for larger rotation angles, while only one shows the contrary trend.

4.2. Concentration for dwarf spiral galaxies

The concentration parameter, as already mentioned, is related with some of the intrinsic properties of the galaxies as dispersion velocity, size, and luminosity (Graham et al. 2001). Moreover, it is well known that the earlier the galaxy, the larger the C values is (e.g. Conselice (2003) and references therein). The average value for elliptical galaxies is about 4.4 while is 2.5 for

Fig. 5. Comparison of asymmetry values in filter V at $r = r_p$ for different rotation angles. (a) rotation angles of 180° vs 45° , (b) rotation angles of 180° vs 90° and (c) rotation angles of 90° vs 45° .

Galaxy	C_V	C_R			
UGCA 5	$2.5{\pm}0.2$				
UGCA 74	$4.1{\pm}0.3$	$3.9{\pm}0.2$			
UGC 891	$3.3{\pm}0.2$	$3.3{\pm}0.3$			
UGC 2301	$4.4 {\pm} 0.1$	$4.3{\pm}0.2$			
UGC 3775	$2.4{\pm}0.2$	$2.2{\pm}0.2$			
UGC 5242	$1.9{\pm}0.3$	$1.9{\pm}0.1$			
UGC 5296	$2.0{\pm}0.2$	$1.9{\pm}0.3$			
UGC 6205	$2.1{\pm}0.1$	$2.1{\pm}0.2$			
UGC 6304	$1.9{\pm}0.2$	$1.9{\pm}0.3$			
UGC 9570	$2.0{\pm}0.1$	$2.0{\pm}0.1$			
UGC 11820	$3.0{\pm}0.3$	$3.0{\pm}0.2$			
UGC 12212	$1.3{\pm}0.2$	$1.3{\pm}0.2$			

TABLE 4

CONCENTRATION, C

dE and 2.9 for dI. Hernández-Toledo et al. (2005) showed that the average concentration parameter decreases from I to B bands, in agreement with the finding that galaxy light distributions are more extended (less concentrated) in bluer bands than in red bands (de Jong 1996).

Table 4 presents the concentration C values for the galaxies in our sample, determined as described in Section 3, for the V filter (column 2) and the R filter (column 3). The first notable observation is that the C parameter remains nearly identical in both filters. This similarity may be attributed to the close central wavelengths of these filters, which result in minimal differences in galactic morphology. Furthermore, the average C value for our sample is 2.7 (see Table 5) in both filters, placing these galaxies at an intermediate level between dI and dE types but significantly lower than the average value for classical spirals (3.9 according to Conselice 2003).

Only two galaxies, UGCA 74 and UGC 2301, exhibit higher C values, while UGC 12212 has a value lower by more than 1σ . The high concentration values observed in UGCA 74 and UGC 2301 bring them closer to those of elliptical galaxies, whereas UGC 12212 displays a concentration even lower than that of Tidal Dwarf Galaxies (See Vega-Acevedo & Hidalgo-Gámez 2022). Among these three galaxies, only UGCA 74 shows high asymmetry values in its outer regions, suggesting that its elevated C values may be linked to a central star formation event triggered by an ongoing interaction process. Notably, the other two galaxies also exhibit peculiar asymmetry values.

The Figure 6 illustrates that the concentration values in the V and R filters follow a linear one-to-one correlation.

Fig. 6. Plot of concentration in filter V versus concentration in filter R. The line represent a correlation one-by-one.

5. DISCUSSION

As discussed previously, the main goal of this investigation is to determine the A and C parameter for a sample of dS galaxies and compared them to the values for other type of galaxies. In the previous sections we obtained the asymmetry and concentration parameters and the average values are of 0.18 ± 0.02 and 2.55 ± 0.02 , respectively, considering the R filter, r_p and a 180^{o} angle.

We can compare these average values of C and A with those reported by Conselice (2003) (See Table 5). The concentration values for dS galaxies are very similar to those of dE and starburst galaxies and slightly lower than those of dI galaxies. In contrast, the values differ significantly from those of late-type spirals. This suggests that, in terms of light concentration, dS galaxies resemble other dwarf galaxies more closely than larger spiral galaxies. Regarding asymmetry, the differences between dS and late-type spirals are smaller, yet the asymmetry values for dS and dI galaxies remain more similar. Although it is difficult to distinguish between dS and late-type disk galaxies based solely on these data, it is notable that the C and A values of dS galaxies align more closely with those of dI galaxies than with those of late-type disks, as reported by Conselice (2003).

The reader may be concerned about the dispersion in the values presented here, particularly in the average values listed in Table 5. Although the 1σ dispersion for dwarf spiral galaxies is relatively large, it is not greater than the dispersion reported by other authors for half of the galaxy types studied

TADLE 0

AVERAGES AND 1σ VARIATIONS OF C AND A FOR GALAXY TYPES

Type	C	A			
$Ellipticals^a$	$4.47{\pm}0.27$	$0.02 {\pm} 0.02$			
Early-type disks $(Sa-Sb)^a$	$3.75{\pm}0.59$	$0.07{\pm}0.04$			
Late-type disks $(Sc-Sd)^a$	$3.10{\pm}0.47$	$0.15{\pm}0.06$			
$Irregulars^a$	$3.25{\pm}0.69$	$0.33{\pm}0.26$			
Edge-on disks ^{a}	$3.7{\pm}0.6$	$0.17{\pm}0.11$			
ULIRGs^{a}	$3.56{\pm}0.74$	$0.32{\pm}0.19$			
$Starbursts^a$	$2.7{\pm}0.2$	$0.53{\pm}0.22$			
Dwarf ellipticals ^{a}	$2.46{\pm}0.28$	$0.02{\pm}0.02$			
Dwarf irregular ^{a}	$2.87{\pm}0.30$	$0.18{\pm}0.10$			
TDG^{b}	$1.75{\pm}0.27$	$0.46{\pm}0.22$			
Dwarf spiral c	$2.36{\pm}0.60$	$0.22{\pm}0.13$			
^a From Conselice (2003) ^b From Vore Accuracy & Hidalas Cómez (2022)					
From Vega-Acevedo & Hidalgo-Gamez (2022)					

 $^c\mathrm{This}$ work.

(Conselice 2003). Additionally, while the sample analyzed in this study is small (consisting of only 12 galaxies), it is comparable in size to the sample of dwarf elliptical galaxies and twice as large as the sample of starburst galaxies in Conselice's work.

5.1. The A-C plane for late-type galaxies

The A-C plane is a projection in two dimensions of the C-A-S space described by Conselice (2003). It has been used to differentiate galaxies with different morphological types in a three-dimensional space (Conselice 2003; Hernández-Toledo et al. 2005). It has been proved quite successful when high redshift galaxies are studied due to the difficulties for their morphological classification. Therefore, it can be useful to shed light in the true nature of the dS galaxies, as discussed in Hidalgo-Gámez (2004).

Figure 7 presents the C-A plane for the galaxies in our sample. In addition to the data points for dS galaxies from Table 6, the regions occupied by different galaxy types, as defined by Conselice (2003), are also shown. Two main conclusions can be drawn: 1) There appear to be two distinct subsamples of dS galaxies-one clustering around C = 2 and another more widely distributed across the plane. 2) When considering the regions occupied by different morphological types, a continuous sequence is evident, extending from elliptical galaxies (located in the upper left of 7) toward dS and dE galaxies (in the upper right). Additionally, mergers, starburst galaxies, ULIRGs, and TDGs, along with some dS galaxies, seem to form a parallel sequence at higher asymmetry values.

Fig. 7. Plane C-A. The regions are centred on the average value of the asymmetry, A, and concentration, C, for each galaxy type. The height and width of the regions correspond to the standard deviations of the asymmetry and concentration respectively. The values used for elliptical, E, dwarf elliptical, dE, spirals, S, early and late, dwarf Irregulars, dIrr, starburts, mergers, and URLIGS were taken from Conselice (2003). The data for TDGs from Vega-Acevedo & Hidalgo-Gámez (2022). Data for dwarf spiral, dS, were taken from Table 3 for r_P at filter V and Table 4 at filter V.

Overall, dS galaxies are widely scattered in the C-A plane. Some exhibit values similar to those of dwarf elliptical galaxies, while the rest are broadly distributed. Specifically, two galaxies (UGCA 5 and UGC 3775) have high asymmetry (A) but normal concentration (C), whereas UGC 2301 and UGCA 74 display high C values, resembling elliptical galaxies-although UGCA 74 falls within the ULIRG region. Additionally, two galaxies (UGC 891 and UGC 11820) lie at the boundaries of the starburst galaxy region.

However, the large dispersion in the C-A plane is not exclusive of dS galaxies. All the groups are quite scattered in the C-A plane, except for giant and dwarf elliptical galaxies, which occupy small part of the plane.

5.2. Extreme galaxies

We have noticed along this investigation the anomalous A and C values of some of the galaxies and it can be seen as well in Figure 7. There are two galaxies which lie at the intersection of the late-type spiral and the irregular galaxies (UGC 891 and UGC 11820). Another two have the most extreme values of the concentration but with the same asymmetry (UGC 2301 and UGC 12212). One more, UGCA 74, is inside the ULIRGs region and UGCA 5 and UGC 3775 are at the edge of the starburst galaxies region. Finally, five of the galaxies (UGC 5242, UGC 5296, UGC 6205, UGC 6304 and UGC 9570) are located close to the dE place.

In order to understand their location of the galaxies in the sample on the C-A plane we can study them in detail. As can be seen in Table 3 and Table 4, there are few galaxies with anomalous values of C and A: two of them (UGC 2301 and UGCA 74) have C values very similar to elliptical galaxies while another two (UGCA 5 and UGC 3775) have A values similar to the Starburst galaxies.

The large concentration value of UGC 2301 resides in its round, low surface brightness shape while the small asymmetry value is due to its lack of any structure. On the contrary, UGCA 74 is a barred galaxy classified as peculiar, with a clear single arm therefore its large A value which place it into the ULIRGs locus. Moreover, it has the largest SFR of the galaxies in the sample $(0.186 M_{\odot} yr^{-1}$ Parkash et al. (2018)). Concerning the galaxies in the Starbursts locus, UGCA 5 is an isolated galaxy (Karachentsev et al. 2006) with an arm or half-ring in the eastern part of the galaxy. There are several clumps with high emission in both UV and B bands but not in the R or NIR ones. Such clumps as well as the half-ring are the responsible for its large asymmetry. On the contrary, UGC 3775 has a SFR, which is typical of late-type galaxies $(0.06 M_{\odot} \text{ yr}^{-1}; \text{ Magaña-Serrano et al. } 2020)$ but a round appearance. Therefore, despite the relationship between A and SFR, according to Conselice (2003), the location in the C-A plane of UGCA 74, UGCA 5 or UGC 3775 is not because their SFR, which is actually much lower than in any starburst.

The other interesting group of galaxies are those with both low values of C and A and are located in the vicinity of the dE locus (UGC 5242, UGC 5296, UGC 6205, UGC 6304 and UGC 9570). In all the case, the low asymmetry and concentrarion values are due to their low surface brightness and their lack of clear structures. Their SFR are quite similar to those galaxies of our sample in the ULIRG and Starburst locations (See Magaña-Serrano et al. 2020).

5.3. Parameters affecting the C-A plane

Several parameters may influence the location of galaxies in the C-A plane. One such factor is the presence of a bar. In our sample, only four galaxies are barred, and their average asymmetry parameter (A) is higher than that of non-barred galaxies (0.23 compared to 0.16). Two of these galaxies exhibit high asymmetry values, while the remaining two have intermediate values. Additionally, all galaxies with the lowest A values are non-barred.

Another factor that may affect the A value is the spiral structure of the galaxies. In a previous study of late-type galaxies by Magaña-Serrano et al. (2020), the spiral structure of eight out of the 12 galaxies in our sample was analyzed. No strong correlation was found between the A parameter and the presence of a spiral structure. However, three of the four galaxies with no clear spiral structure have A values greater than 0.15.

According to Conselice et al. (2000a), A_{180} is sensitive to star-forming regions in the galaxies. Therefore, a relationship between the asymmetry and the star formation rate (SFR) might be expected. Such relationship is shown in Figure 8 for nine of the galaxies in our sample. There is no clear relationship between these two parameters for these galaxies but a constant value. The galaxy with the largest SFR, UGC 9570, has a normal value of the A parameter.

Fig. 8. The relationship between the asymmetry at 180° and the SFR for nine of the galaxies of the sample.

In the classical work by Graham et al. (2001) it is concluded that the concentration index is also a measure of the scale of a galaxy. Moreover, they argued that there is a correlation between the total light concentration and the stellar mass, because elliptical massive galaxies have large C values than spiral and irregular. In order to prove such correlation for late-type galaxies the stellar masses of some of the galaxies in the sample were estimate following the relationship between the M/L ratio (in solar units) and the AB magnitudes (from the SDSS RD7 corrected by Galactic extinction and K-correction) by Bell et al (2003).

$$\log\left(M/L\right) = a_{\lambda} + (b_{\lambda} \times color) \tag{4}$$

A total of six different M_* were determined from the r-i and r-z colours. An average value of all them were considered as the stellar mass of the galaxies. Uncertainties in stellar mass was determined from the standard deviation of the results. The M_* values obtained are listed in Table 6.

The relationship between stellar mass and concentration in the R filter is presented in Figure 10. Although the sample size is small, a strong linear

VEGA-ACEVEDO ET AL.

correlation is observed, with a regression coefficient of 0.86. However, the data exhibit significant dispersion. This result differs notably from the trend reported by Vega-Acevedo & Hidalgo-Gámez (2022), where the correlation was found to be exponential for galaxies with stellar masses below $2.4 \times 10^8 M_{\odot}$, becoming flat for higher masses (represented by the dashed line in the figure).

This finding is particularly intriguing given the subtle differences observed in the C-A plane between the tidal dwarf galaxies and candidate galaxies analyzed by Vega-Acevedo & Hidalgo-Gámez (2022) and the dS galaxies in their study (see Figure 10). In any case, additional data on Sm and dS galaxies are required to establish a more conclusive relationship between these two parameters.

Fig. 9. Plot of absolute magnitude B versus concentration in filter V.

Finally, we can briefly discuss the relationship between the SFR and the stellar mass for the five galaxies with stellar masses values. This is shown in Figure 11. Although there is few data, an strong correlation between these two parameters for dS galaxies is clear. Againg, more data on the stellar mass for dS galaxies are needed in order to check the trend emerging here.

6. CONCLUSIONS

In this study, the asymmetry and concentration parameters for a sample of Sm/dS galaxies were determined. The average asymmetry value for our sample falls between those of irregular galaxies and late-type spirals, indicating

Galaxy	$M_{*}\left[M_{\odot}\right] \times 10^{8}$	$SFR\left[M_{\odot}yr^{-1} ight]$	C_R	А
UGCA 5			2.5 ± 0.2	$0.26 {\pm} 0.04$
UGCA 74			$4.0 {\pm} 0.2$	$0.34{\pm}0.05$
UGC 891		$0.10 {\pm} 0.01$	$3.3{\pm}0.2$	$0.16{\pm}0.03$
UGC 2301			$4.3{\pm}0.1$	$0.20{\pm}0.05$
UGC 3775		$0.14{\pm}0.03$	$2.3{\pm}0.2$	$0.33{\pm}0.1$
UGC 5242	$3.67{\pm}1.09$	$0.20{\pm}0.03$	$1.9{\pm}0.2$	$0.15{\pm}0.02$
UGC 5296	$2.34{\pm}1.18$	$0.03 {\pm} 0.01$	$1.9{\pm}0.3$	$0.12{\pm}0.01$
UGC 6205	$5.77 {\pm} 2.92$	$0.23{\pm}0.03$	$2.1{\pm}0.2$	$0.09{\pm}0.01$
UGC 6304	$5.24{\pm}1.62$	$0.30{\pm}0.03$	$1.9{\pm}0.3$	$0.12{\pm}0.01$
UGC 9570	$1.20{\pm}4.66$	$0.43 {\pm} 0.05$	$2.0{\pm}0.1$	$0.09{\pm}0.01$
UGC 11820		$0.02{\pm}0.03$	$3.0{\pm}0.2$	$0.15{\pm}0.02$
UGC 12212		$0.40 {\pm} 0.05$	$1.3{\pm}0.2$	$0.19{\pm}0.04$

TABLE 6

STELLAR MASS AND STAR FORMATION RATE

that these galaxies are less symmetrical than the latter. Regarding concentration, the average value is lower (indicating higher concentration) than that of both late-type spirals and irregular galaxies.

Additionally, we analyzed variations in these parameters when different filters (V and R), rotation angles, and galaxy regions were considered. The data suggest that for Sm/dS galaxies, asymmetry values do not exhibit significant differences between the two filters. However, variations are observed when different radii and angles are taken into account. The rotation angle yielding the lowest asymmetry is 45° , while the highest asymmetry is found at 90° , at both radii. This behavior contrasts with that of large galaxies, possibly due to the looser spiral structure of smaller galaxies. Furthermore, the inner regions of the galaxies are more symmetrical compared to the galaxy as a whole. This result aligns with the findings of Conselice (2003) regarding symmetry in the internal regions of galaxies.

The position of our sample in the C-A plane exhibits considerable dispersion, with some galaxies occupying the same locus as dE galaxies and others aligning with the starburst locus. However, the majority of the sample is located between the regions typically occupied by late-type spirals and irregular galaxies, as expected.

Finally, some interesting trends have been noted regarding this sample of galaxies. There is a correlation between the concentration and the stellar mass but with very few data. Moreover, these galaxies are not in the same locus than irregular and TDG in this plane, but almost perpendicular to it. Considering the asymmetry, there is no correlation between A and the SFR for the galaxies in our sample. Actually, the Sm/dS galaxies have similar values,

Fig. 10. Concentration in R filter versus stellar mass. The dashed line is the correlation fit for TDG of Vega-Acevedo & Hidalgo-Gámez (2022).

on average, than TDG but the former do not show the bimodal behaviour in the diagram. Finally, Sm/dS galaxies do show a relationship between the SFR and the stellar mass, being in between the two arms described by the TDG (Vega-Acevedo & Hidalgo-Gámez 2022).

The discrepancies between the trends observed in our sample of Sm/dS galaxies and the results of previous studies are noteworthy and may suggest that these galaxies possess distinct structural properties, more akin to those of TDG galaxies. This underscores the importance of detailed studies to better understand the specific characteristics of different galaxy types and how they vary in relation to properties such as stellar mass and concentration.

Due to the small sample size (12 galaxies), the results are not statistically significant. However, these findings are intriguing and warrant further investigation, particularly by expanding the sample in future studies. Therefore, a larger dataset including dS, Sm, TDG, and dwarf irregular galaxies is essential for drawing more robust conclusions.

7. ACKNOWLEDGEMENTS

This research was supported by the Instituto Politécnico Nacional (México) under the research projects SIP-20230588 and SIP-20240903. This work is part of M. en C. I. Vega Acevedo's Ph.D. thesis, sponsored by CONACyT. This investigation has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Fig. 11. Plot of star formation rate versus stellar mass. The horizontal and vertical dash lines are the SFR and stellar mass mean of dwarf galaxies, respectively.

Administration (NASA). This work is based in part on observations made with the GALEX Space Telescope, which is operated by the Jet Propulsion Laboratory with the National Aeronautics and Space Administration (NASA). The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofísica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

REFERENCES

Abraham, R. G., Tanvir, N. R., Santiago, B. X., et al. 1996, MNRAS, 279, L47
Abraham, R. G., van den Bergh, S., Glazebrook, K., et al. 1996, ApJS, 107, 1
Banse, K., Crane, P., Grosbol, P., et al. 1983, The Messenger, 31, 26
Bell E. F., McIntosh D. H., Katz N., Weinberg M. D., 2003, ApJS, 149, 289
Bershady, M. A., Jangren, A., & Conselice, C. J. 2000, AJ, 119, 2645

- Binney J., Tremaine S., 2008, gady.book
- Carroll B. W., Ostlie D. A., 1996, ima..book
- Curtis, H. D. 1918, PASP, 30, 159
- Conselice, C. J., Bershady, M. A., & Gallagher, J. S., III 2000a, A&A, 354, L21
- Conselice, C. J., Bershady, M. A., & Jangren, A. 2000b, ApJ, 529, 886
- Conselice, C. J. 2003, ApJS, 147, 1
- de Jong R. S., 1996, A&A, 313, 45
- de Vaucouleurs, G. 1959, Handbuch der Physik, 53, 275
- de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H.G., Buta, R.J., Paturel, G., & Fouque, P. 1991, Third Reference Catalogue of Bright Galaxies (RC3), Springer-Verlag, New York, doi:10.1007/978-1-4612-0907-7
- Graham, A. W., Erwin, P., Caon, N., & Trujillo, I. 2001, ApJ, 563, L11
- Graham, A. W., Trujillo, I., & Caon, N. 2001, AJ, 122, 1707
- Graham, A. W., Driver, S. P., Petrosian, V., et al. 2005, AJ, 130, 1535
- Hernández-Toledo, H. M., Avila-Reese, V., Conselice, C. J., & Puerari, I. 2005, AJ, 129, 682
- Hidalgo-Gámez, A. M. 2004, RMxAA, 40, 37
- Hodge P. W., Kennicutt R. C., 1983, ApJ, 267, 563
- Hubble, E. P. 1926, ApJ, 64
- Hubble, E. P. 1936, Realm of the Nebulae, by E.P. Hubble. New Haven: Yale University Press, 1936. ISBN 9780300025002
- Karachentsev, I. D., Karachentseva, V. E., & Huchtmeier, W. K. 2006, A&A, 451, 817
- Kennicutt, R. C., Jr., & Kent, S. M. 1983, AJ, 88, 1094
- Magaña-Serrano M. A., Hidalgo-Gámez A. M., Vega-Acevedo I., Castañeda H. O., 2020, RMxAA, 56, 39
- Morgan, W. W. 1958, PASP, 70, 364
- Morgan, W. W. 1959, PASP, 71, 394
- Nilson P., 1973, Nova Acta Regiae Soc. Sci. Upsaliensis Ser. V, 0
- Parkash V., Brown M. J. I., Jarrett T. H., Bonne N. J., 2018, ApJ, 864, 40
- Petrosian, V. 1976, ApJ, 209, L1
- Pović, M., Sánchez-Portal, M., Pérez García, A. M., et al. 2009, ApJ, 702, L51
- Roye E. W., Hunter D. A., 2000, AJ, 119, 1145
- Schade, D., Lilly, S. J., Crampton, D., et al. 1995, ApJ, 451, L1
- Schuster, W. J., & Parrao, L. 2001, RMxAA, 37, 187
- Sérsic, J. L., Pastoriza de de Cesare, M., & Carranza, G. 1968, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 13, 20
- van den Bergh, S., Abraham, R. G., Ellis, R. S., et al. 1996, AJ, 112, 359

Vega-Acevedo, I., 2013, Estudio del parámetro de asimetría en galaxias espirales enanas, MS thesis, Instituto Politécnico Nacional, CDMX, Mexico

- Vega-Acevedo I., Hidalgo-Gámez A. M., 2022, RMxAA, 58, 61
- Warmels, R. H. 1992, Astronomical Data Analysis Software and Systems I, 25, 115
- Karachentsev, I.D., Makarov, D.I., Sharina, M.E., Dolphin, A.E., Grebel, E.K., Geisler, D., Guhathakurta, P., Hodge, P.W., Karachentseva, V.E., Sarajedini, A., & Seitzer, P. 2003, A Catalog of Neighboring Galaxies, AJ, 126, 2740-2758, doi:10.1086/379100

- I. Vega-Acevedo: Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos, C.P. 07738, Ciudad de México, México (ivegaa@ipn.mx).
- A.M. Hidalgo-Gámez: Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos, C.P. 07738, Ciudad de México, México (amhidalgog@ipn.mx).
- B. Miranda-Pérez: Escuela Superior de Ingeniereía Mecánica y Eléctrica, Instituto Politécnico Nacional, U.P. Adolfo López Mateos, C.P. 07738, Ciudad de México, México (bmirandap@ipn.mx).