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RESUMEN

Presentamos Deep-learning Transient Astronomical Object (Deep-TAO), un

conjunto de 1,249,079 imágenes anotadas del Catalina Real-time Transient

Survey, con 3,807 secuencias transientes y 12,500 no transientes. Deep-TAO

ha sido diseñado como un recurso limpio, de acceso abierto y fácil de usar,

ideal para evaluar y comparar modelos de aprendizaje profundo. Incluye

eventos transientes como blazares, núcleos galácticos activos, variables cat-

acĺısmicas, supernovas y eventos de naturaleza indeterminada. El conjunto de

datos está disponible públicamente en formato FITS, acompañado de rutinas

en Python y cuadernos de Jupyter que facilitan su uso. Utilizando Deep-TAO,

una red neuronal convolucional básica superó el desempeño de clasificadores

tradicionales basados en bosques aleatorios entrenados con curvas de luz, de-

mostrando su potencial para mejorar la clasificación de eventos transientes.

ABSTRACT

We present the Deep-learning Transient Astronomical Object (Deep-TAO), a

dataset of 1,249,079 annotated images from the Catalina Real-time Transient

Survey, including 3,807 transient and 12,500 non-transient sequences. Deep-

TAO has been curated to provide a clean, open-access, and user-friendly re-

source for benchmarking deep learning models. Deep-TAO covers transient

classes such as blazars, active galactic nuclei, cataclysmic variables, super-

novae, and events of indeterminate nature. The dataset is publicly avail-

able in FITS format, with Python routines and Jupyter notebooks for easy

data manipulation. Using Deep-TAO, a baseline Convolutional Neural Net-

work outperformed traditional random forest classifiers trained on light curves,

demonstrating its potential for advancing transient classification.
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1. INTRODUCTION

A primary challenge in time-domain astronomy lies in the detection and

classification of transient astronomical events. Over recent years, methods to

automate these processes have seen remarkable improvements in both com-

plexity and computational efficiency, driven by the exponential growth of data

sets requiring timely analysis (Kaiser 2004; Law et al. 2009; Smartt et al. 2015;

Chambers et al. 2016; Mart́ınez-Palomera et al. 2018; Bellm et al. 2019; Dyer

et al. 2020; Nidever et al. 2021).

Machine learning (ML) (Wyrzykowski et al. 2014; D’Isanto et al. 2016;

Gieseke et al. 2017; Neira et al. 2020; Sánchez-Sáez et al. 2021; Van Roestel

et al. 2021) and deep learning (DL) approaches (Gieseke et al. 2017; Cabrera-

Vives et al. 2017; Carrasco-Davis et al. 2019; Muthukrishna et al. 2019; Gómez

et al. 2020; Sánchez-Sáez et al. 2021; Allam Jr & McEwen 2024; Van Roes-

tel et al. 2021; Killestein et al. 2021) have demonstrated their capability to

provide rapid and accurate solutions for transient classification tasks, offering

significant advancements over traditional methods.

The further development and optimization of ML and DL algorithms criti-

cally depend on the availability of large-scale, high-quality, and representative

data sets. These data sets can be constructed from real observational data

(Neira et al. 2020), synthesized light curves (Carrasco-Davis et al. 2019), or

image-based data derived from either real (Scalzo et al. 2017) or simulated

observations (Carrasco-Davis et al. 2019). The diversity and realism of these

data sets are essential for improving the generalizability and robustness of

classification models in the context of astronomical transient phenomena.

The image-based data sets that could be used to test and train new DL

applications usually present some limitations:

1) Restricted access. Some data sets are private and only survey collab-

orators can access the data. This limits the possibilities by a broader

group of scientists to use the data set to improve DL techniques.

2) Inconvenient access. Some surveys have setup public websites to access

their data. However, sometimes the system has been designed to re-

trieve information about individual objects (Drake et al. 2009; Scalzo

et al. 2017; Nidever et al. 2021) and not large samples. This makes it

inconvenient to compile the full data set required for DL training.

3) Unrealistic images. There are public and easy-to-gather data sets, how-

ever, they are based on simulated images (Carrasco-Davis et al. 2019).

This limits the realism desired to best train DL architectures.

4) Incomplete labels. There are public, easy-to-gather, and realistic data

sets that do not have labels on their data (Smartt et al. 2015). These

labels are required to train supervised DL architectures.

To date, no data set for DL transient classification has been made eas-

ily accessible to the public in the form of a fully labeled catalog based on
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Fig. 1. Overview of the search procedure to acquire the image sequences of transient

objects.

observations. The purpose of this paper is to present a data set to fill that

gap.

We denominate this data set Deep-TAO, for Deep-Learning Transient As-

tronomical Objects. We build Deep-TAO using public data from the Catalina

Real-Time Transient Survey (CRTS) (Drake et al. 2009), an astronomical

survey searching for transient and highly variable objects. We develop a pro-

cedure of extraction and transformation from CRTS into a homogeneous data

set of thousands of objects that can be used to train DL algorithms and es-

tablish benchmarks.

This paper is structured as follows. In Section 2 we describe the CRTS to-

gether with the selection and compilation procedures. In Section 3 we describe

the main features of Deep-TAO including their structure. Then, in section 4

we describe how to connect our data set with MANTRA (Neira et al. 2020) a

light curve-based dataset build also from the CRTS. Finally, in section 5 we

demonstrate how Deep-TAO can be used in deep learning-based classification

tasks, then we make a brief discussion and a summary.

2. OBSERVATIONAL INPUTS TO BUILD DEEP-TAO

2.1. The Catalina Real-Time Transient Survey and the Catalina Sky Survey

We retrieve the images for Deep-TAO from the public catalogs of the

Catalina Real-Time Transient Survey (CRTS) (Drake et al. 2009; Mahabal

et al. 2011), an astronomical survey for transients and highly variable objects.

The area covered by the CRTS is 33,000 square degrees and has been observ-

ing the sky since 2007 with three telescopes: Mt. Lemmon Survey (MLS),

Catalina Sky Survey (CSS), and Siding Spring Survey (SSS). We use data

from the CSS telescope, an f/1.8 Schmidt catadioptric equipped with a 111-

megapixel CCD detector. The CSS telescope and detector have a scale of
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Fig. 2. Sample images in Deep-TAO. Each row corresponds to a sample of a different

class. The temporal spacing between consecutive images varies for each example.

Images were normalized for visualization.

2.5 arcseconds per pixel, giving an 8 square degrees field of view. Observa-

tions were made in a grid of adjacent fields. The survey covered 4,000 square

degrees per night, with a limiting magnitude of 19.5 in the V-band. Each

observation is an image obtained using an exposure time of 30 seconds.

2.2. Transient catalogs from the CRTS and the CSS

We build Deep-TAO from the public transient catalog published by the

CRTS. The data reports five classes: blazars (BZ), active galactic nuclei

(AGN), cataclysmic variables (CV), supernovae (SN), high proper motion

stars (HPM), and other events of unknown nature (Drake et al. 2009). The

transient catalog lists the right ascension (RA), Declination (Dec), V-band

magnitude, discovery date, classification class, and light curve points.

The CSS catalog contains observations from 2003 to 2012. The selected

fields were typically visited four times by night and the median total number

of visits over 10 years is 20. Each CSS image (of size 4, 110 × 4, 096 pixels

covers an area of 29,500 squared arcminutes) is divided into 1,156 smaller

images called cutouts stored in the Flexible Image Transport System (FITS)

format. Each cutout is about 120× 120 pixels and represents an area of 5× 5

arcminutes. Each cutout file stores the pixel intensities, the date on which

the image was captured, a field identifier, and a number identifying the order

of the image in the sequence of observations taken on a given night.

2.3. Building Regions of Interest

We use the cutouts to build a Region of Interest (RoI) centered on an

object of interest. We design RoIs to be squares of 64×64 pixels size centered
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on a RA/Dec coordinate of interest. This requires downloading the cutouts,

assembling them into a single image, and then finally cutting out the RoI

around the RA/Dec of interest.

We refer to the time-ordered set of RoIs around the same coordinate as a

RoI sequence. We build RoI sequences over a three-year interval, where the

second year always includes the date of maximum brightness. Over that time

the time-spacing between images is not uniform. Intervals range from days to

months.

We query the RoI sequences using web scraping techniques to automat-

ically access and download the images using as an input a desired RA/Dec

position. This process comprises five different steps:

1) Download all the available cutouts that overlap with the input RA/Dec

in a time span of three years for each object.

2) For each cutout, locate the RA/Dec location to define a region of interest

(RoI) around that coordinate.

3) Count the number of neighboring cutouts (one or three) required to

build the RoI.

4) Query for the neighboring cutouts. If any of those does not exist, the

RoI is not built.

5) Concatenate all cutouts to extract and store the RoI.

Figure 1 illustrate these steps. It took 11, 000 CPU hours to query the

CRTS/CSS database to build the full Deep-TAO data set.

The transient objects are available from CRTS catalogs. However, a cata-

log of Non-Transient objects is not available. To define Non-Transient RA/Dec

locations, we use the transient sources cutouts. All sources in the cutout of

a transient at any date are detected. Then, the sources at a distance greater

than a threshold of 33 pixels from the transient are considered as a possible

non-transient candidate. This threshold ensures that the transient object does

not appear in the RoI of the non-transient candidate. For each one of the non-

transient candidates we compute its RA/Dec coordinates to build all the RoIs

on the same dates as the parent transient sequence. Using this procedure, we

compile a total of 12,500 Non-Transient locations.

3. DEEP-TAO DESCRIPTION

Figure 2 shows a grid of illustrative examples for different transients and

Non-Transients in Deep-TAO. The images in that figure are a subset from

the full RoI sequence for each object, the temporal spacing between images is

uneven and the time-stamps are not uniform across different objects. To ease

visualization the pixel values are re-normalized to have the same range across

all the images.
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Fig. 3. Cumulative distribution of RoIs per sequence. (Left) the distributions are

split across transient classes. The median is around 100 images by sequence. (Right)

Distributions split between transients and non-transients objects. The median for

non-transients is around 70 images per sequence.

Fig. 4. (Left) Cumulative fraction as a function of the median signal for the objects in

each transient class and all transients objects (continuous line). (Right) Cumulative

fraction between transients and non-transients objects. The shape between these

classes is similar. In both Figures the media of the signal is around 2000.

In all the cases shown in Figure 2, the variability of the central source is

easy to spot by eye. This illustrative example also shows features (i.e. trails

at the end of the Cataclysmic Variable sequence, overall brightness change in

the first half of the Other Objects class) that might come from fluctuating

observational and instrumental conditions, representing the realism of Deep-

TAO.

Out what follows we describe overall Deep-TAO statistics, the data model

used to store the information in the public repositories, and the python-based

tools to interact with Deep-TAO files.

3.1. General Statistics

Table 1 summarizes global statistics for the Deep-TAO data set. The first

row shows the total number of targets in the original CRTS catalog. The

second row indicates the number of targets for which we manage to recover

a RoI sequence. Some transients in the original catalog are not included in
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Fig. 5. (Left) Cumulative distribution of the average signal-to-noise. for the object

in each transient class and all transients objects (continuous line). The media of

signal/noise for all transients objects is around 10. (Right) Cumulative fraction be-

tween transients and non-transients objects. In both cases the media of signal/noise

is around 20.

TABLE 1

GENERAL STATISTICS OF DEEP-TAO DATA SET*

BZ AGN CV OTHER SN Total Transients Non-Transients Total

Targets in CRTS 270 651 987 1,054 1,723 4,712 - 4,712

Targets in Deep-TAO 239 606 772 818 1,372 3,807 12,500 16,307

Total RoIs 23,429 66,998 73,739 74,536 146,847 385,549 863,530 1,249,079

*The first row corresponds to the transients included in the public CRTS transient catalog. The second row represents the

number of objects for which we can retrieve a sequence of RoIs over a three-year observation period. The last row is the total

number of RoIs included for each class.

Deep-TAO out due to the impossibility of having the transient centered in the

cutout. The third row indicates the total number of RoI extracted for each

class.

Figures 3, 4, 5 present some cumulative statistics computed over the RoI

sequences for each class. Figure 3 shows the cumulative distribution for the

number of images by sequence. The left panel shows all the transient classes,

the right panel compares transients and non-transients. This Figure shows

that the median value is close to 100 RoIs per sequence. The shortest sequence

has 5 RoIs and the longest close to 300 RoIs. For non-transient sequences,

there is a median of 70 RoIs, while for transients the median is 100 RoIs per

sequence.

Figure 4 shows results for the average RoI signal. Here we define the signal

as the sum of all CCD counts across the RoI. The left panel corresponds to all

transient classes, while the right panel compares transients and non-transients.

This Figure shows that all transient classes and the non-transients have similar

intensity distributions.

Figure 5 compares the average signal-to-noise (S/N) distribution for all
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TABLE 2

FITS HEADER OF THE TRANSIENT FILES

Header Dict Description Type

CRTS ID Catalina Real-time Transient Survey ID. str

RA (J2000) Right Ascension (degrees). float

Dec (J2000) Declination (degrees). float

N Images Total number of images for CRTS ID. int

UT Date UT Discovery Date (YYYYMMDD). float

Mag Unfiltered CSS magnitude. float

CSS Images Pre and post-discovery images ID. int

SDSS Covered by SDSS DR-12 (yes/no). str

Others ID to other image data at the location (PQ, DSS, 2MASS, SDSS). int

Followed P60 follow up (yes/no). str

Last Last Observation date. str

LC Current CSS lightcurve. int

FC Finding chart (yes/no). str

Class Transient classification. str

TABLE 3

IDENTIFIERS STORED FIRST HDU: TRANSIENT FILES*

Key Description Type

HDU Ext HDU extension of the RoI (From 2 to N Images+1). int

Set Number Stands for the sequence (or set number). str

Date Date of observation (YYMMMDD). str

MJD Modified Julian Date. float

Field ID Field identifier. str

Obs In Seq Refers to the observation’s number in the sequence. str

Cutout The cutout matrix location. Each cutout covers an area of ABOUT 5 x 5 arcminutes. str

*Basic information in the first HDU about the image sequence in each transient FITS file.

transient classes (left) and transients versus non-transients (right). We esti-

mate the signal-to-noise for a RoI as the ratio between the sum of all CCD

counts and the standard deviation of the CCD counts. We find that the aver-

age S/N spans almost two orders of magnitude ranging from 1 up to 100. For

transients, the median of the average S/N ranges between 6 and 20 across all

classes, with some differences between classes. On the contrary, the distribu-

tion for Transients and Non-Transients is virtually the same.
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TABLE 4

FITS HEADER OF THE NON-TRANSIENT OBJECTS

Header Dict Description Type

CRTS ID Catalina Real-time Transient Survey ID. str

RA (J2000) Right Ascension (degrees). float

Dec (J2000) Declination (degrees). float

N Images Total number of images for CRTS ID. int

Img Ref Image of reference where the non-transient object was identified. str

TABLE 5

IDENTIFIERS STORED FIRST HDU: TRANSIENT FILES*

Key Description Type

HDU Ext HDU extension of the RoI (From 2 to N Images+1). int

Date Date of observation (YYMMMDD). str

MJD Modified Julian Date. float

Field ID Field identifier. str

Cutout The cutout matrix location. Each cutout covers an area of ABOUT 5 x 5 arcminutes. str

*Basic information in the first HDU of the Non-Transient objects about the image sequence in each FITS file.

3.2. Data Model

The Deep-TAO data set is allocated on GitHub into two different reposito-

ries, one for transients objects6 and other for non-transients7. The transient’s

repository contains three main folders data, paper and mantra.

The data folder has all the transients sequences separated in subfolders

by class (AGN, BZ, CV, OTHERS, and SN), each subfolder contains the

sequences stored in FITS files. A single FITS file stores all the RoIs associated

with a transient event, the file name is the CRTS identifier. Each file contains

a header, the FITS header in each file has minimal identifying information

such as the CRTS ID unique identifier, the J2000 RA/Dec coordinates, the

number of RoIs (N Images) in the sequence, and the Universal Time UT Date

associated with the discovery date. The full list of fields included in the header

is listed in Table 2.

The first HDU (extension 1) in the FITS files is a 2D array with the

columns listed on Table 3. This array contains information for each RoI in

the sequence, such as the HDU extension for each RoI and its observation

date. Starting from the HDU 2 on-wards up to the HDU N Images+1, each

HDU contains a RoI as an integer array of size 64×64.

6https://github.com/MachineLearningUniandes/TAO_transients
7https://github.com/MachineLearningUniandes/TAO_non-transients

https://github.com/MachineLearningUniandes/TAO_transients
https://github.com/MachineLearningUniandes/TAO_non-transients
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The second main folder is paper, it contains the Figures 3, 4, 5 that

describe general statistics of Deep-TAO. This folder also contain a python-

based tool to reproduce these ones. This tool will be explained in the next

subsection.

The mantra folder contains the Figure 6, which shows an example of how

to connect Deep-TAO with MANTRA (Many ANnotated TRAnsients), an

annotated Machine-learning Reference lightcurve data set in V-band also built

from the CRTS (Neira et al. 2020). More details in the section 4.

Finally, the non-transient’s repository only contains the data folder with

the FITS files of the non-transients objects. At difference to the header of a

Transient FITS file, the non-transient FITS header allocate the information

of the Table 4, these are the CRTS ID, the RA/Dec coordinates, the number

of images in the sequence, and the image source where was extracted from.

The first HDU in each FITS non-transient file allocates the information

of the Table 5: the HDU Extension for each RoI, the date of observation, the

MJD, the Field ID, and the cutout.

3.3. Python-based tools

In the folder data of the transients repository, there is a jupyter notebook

to manipulate the data. The Read dataset jupyter notebook shows the mech-

anism to read the FITS files for the transients and non-transients objects. In

the folder paper in the same repository, we provide the Explore data set

Jupyter notebook, this shows how to compute some statistics from Deep-TAO

to obtain the Figures 2, 3, 4 and 5, assuming that the data/NON folder from

the non-transient’s repository is located in the data folder of the transient’s

repository. This notebook also create a plain text file in the paper folder called

statistic.csv. This file has 16,307 rows, one by object in Deep-TAO, and

four columns with the class name class (BZ,AGN,CV,OTHER,SN or NON),

the number of images by sequence nimages seq, the median of the signal/noise

measure signal noise median and the median of the signal signal median.

4. LINKING DEEP-TAO IMAGES TO MANTRA LIGHTCURVES

In (Neira et al. 2020) was presented MANTRA an annotated Machine-

learning reference lightcurve data set also built from the CRTS. MANTRA

contains 4,869 transients and 71,207 Non-Transients as a plain text file to fa-

cilitate standardized quantitative comparison of astronomical transient event

recognition algorithms. The classes included in MANTRA are Supernovae,

Cataclysm Variable, Active Galactic Nuclei, High Proper Motion stars, Blazars,

and Flare. The data set is publicly available and easy to access 8.

In the mantra folder of the Deep-TAO transients repository9, we provide

the Connection MANTRA Jupyter notebook to link the image sequence from

8https://github.com/MachineLearningUniandes/MANTRA
9https://github.com/MachineLearningUniandes/TAO_transients

https://github.com/MachineLearningUniandes/MANTRA
https://github.com/MachineLearningUniandes/TAO_transients
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Fig. 6. Lightcurve and examples of the image sequence for the AGN

CSS130627:001809+274920 from MANTRA and Deep-TAO obtained using the

Connection MANTRA jupyter notebook. The red cross correspond to the images plot-

ted bottom in the Figure.

Deep-TAO to the lightcurve from MANTRA. This connection is done through

the unique CRTS ID. For non-transients, this connection between images and

light curves cannot be established between Deep-TAO and MANTRA due

both have different non-transient objects.

Figure 6 shows an example for an AGN. Using the MJD information it

is possible to connect points in the light curve to images in the sequence. In

the light curve of Figure 6, the red crosses correspond to the images plotted

below in the Figure. Due to the constraints in the RoI construction (Section

2) not all points in the MANTRA lightcurve have a corresponding image

in Deep-TAO. Also, because Deep-TAO includes only three-year intervals of

observations.

5. EXAMPLE OF A DEEP-TAO APPLICATION

Here we show some examples of Deep-TAO applications using a Convolu-

tional Neural Network (CNN) to gauge its performance on three basic classi-

fication tasks:

1. binary classification between Transients and Non-Transients.

2. fine-grained classification into five transient classes (Blazar, AGN, Cat-

aclysmic Variables, Supernovae, and Other)

3. fine-grained classification into five transient classes and Non-Transients

as a sixth class.

We evaluate all tasks with metrics robust to class imbalance. For each

class, we report the maximum F-measure (F1) from the Precision-Recall (PR)

curve that we construct by setting different thresholds on the output probabil-

ities of each class. The global performance is the F1 average across individual

classes with an uncertainty computed as the standard deviation. In all the
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TABLE 6

F-MEASURE FOR THE BINARY TASK*

Set Data Model Transient Non-Transient F1 (µ± σ)

Validation Images TAO-Net 74.46 95.06 84.76 ± 10.30

*F-measure for each class in the validation set for the binary task. The last column

reports the average F-measure.

experiments we use 70% of Deep-TAO for training, 25% for validation, and

5% for testing.

The CNN we use here is based on previous work by Gómez et al. (2020).

They used TAO-Net a neural network composed of two modules. First, a CNN

based on the architecture DenseNet to extract a feature representation and

then a Recurrent Neural Network (RNN) that uses these representations to

solve the classification task. Here we only use the first part, a CNN based on

a Densely Connected Convolutional Network (DenseNet) (Huang et al. 2017)

with L = 70 layers and a growth rate k = 32.

We model the temporal information by selecting images from the complete

sequences. We consider images at three different dates in sequential order,

such that they reflect differences in brightness for transient classes. We include

the observation date in the three-year period when the transient object had the

maximum brightness and one observation before and after that date. For the

Non-Transient class, we take the first, middle, and last dates of the sequence

of ordered images. At each date, we take the first available observation, and

then merge the temporal information by sampling images from the complete

sequences at three different dates in sequential order. That selection reflects

the evolution of the temporal information evidencing the differences in the

brightness for transient classes.

Table 6 summarizes the results of the binary classification task. As ex-

pected, it is considerably easier to classify a sequence as a Non-Transient (F1

of 95.06) than as Transient (F1 of 74.46).

For the five-class transient classification task, we made a experiment that

consist in the traditional approach for transient classification using the light

curves from the CRTS. We compute the discriminatory features from the light

curves to train a Random Forest (RF) classifier. All the details on the feature

extraction and the RF classifier can be found in Neira et al. (2020). These

results are equal to Gómez et al. (2020) because we share the same dataset

and the algorithm parameters.

Table 7 shows the F-scores of the transient classification tasks. The results

show that classification with images using a CNN is a better option that makes

a classification with light curves using a RF algorithm. With RF on light

curves, the best classification is for the OTHER class with 56.06, followed by

the SN class with 55.36. The worst is the BZ class with 19.74, the average

F1-score is 45.49. The CNN on images is better with an average F1-score of
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TABLE 7

F-MEASURE FOR THE TRANSIENT CLASSIFICATION*

Set Data Model BZ AGN CV OTHER SN F1 (µ± σ)

Validation Light curves RF 19.74 42.67 53.60 56.06 55.36 45.49 ± 13.75

Validation Images CNN 25.17 49.77 59.48 64.04 63.39 52.37 ± 14.53

*The last column reports the average F-measure of the 5 transient categories.

TABLE 8

F-MEASURE FOR THE MULTI-CLASS DETECTION*

Set Data Model BZ AGN CV OTHER SN Non-T F1 (µ± σ)

Validation Images CNN 21.82 37.45 54.76 40.22 46.59 95.29 49.36 ± 22.84

*The last column reports the average F-measure of the 6 classes.

52.37, where the best classification is for OTHER with 64.04, followed by SN

with 63.39 and the worst classification is for BZ with 25.17.

Finally, in Table 8 we present the F-scores of the multi-class classification

problem, where are included the five transient classes and the non-transient

class using only the CNN method with images. Compared to the previous

task, the overall performance is worse for every transient class, showing that

this task is more difficult when non-transient objects are included. The F-

measure shows that the best classification is for the non-transient class with

a score of 95.29. The best transient class classified correctly is the CV with a

score of 54.76, followed by the SN class with a score of 46.59.

6. CONCLUSIONS

There is an increasing interest in automatized methods to detect transient

sources. Some of these methods are based on Deep Learning techniques that

require the use of large and realistic and data sets for its training. Having

public and easy-to-access data sets can trigger the development of new deep

learning applications for transient detection.

In this paper we presented such a data set. We named it Deep-TAO

for Deep-learning Transient Astronomical Object (Deep-TAO). This is the

first public and easy-to-access data set based on real images that can be

used to train and improve Deep Learning algorithms in the task of Transient

classification. The data set is a compilation of images extracted and transform

from the Catalina Real-Time Transient Survey (CRTS). Deep-TAO includes

3, 807 transient and 12, 500 non-transient objects with a total of 1, 249, 079 real

astronomical images. Deep-TAO is publicly available at https://github.

com/MachineLearningUniandes/.

https://github.com/MachineLearningUniandes/
https://github.com/MachineLearningUniandes/
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We demonstrated the utility of Deep-TAO with a set of deep learning

experiments and comparisons against a machine learning algorithm. We ex-

plored the transient versus non-transient task, the fine-grained multi-classification

task between five transient classes, and finally a fine-grained multi-classification

task with six classes, 5 transients classes, and non-transient as another class.

In the three tasks we used the same architecture, a Densely Connected

Convolutional Network with L = 70 layers and a growth rate k = 32 motivated

by the more complex architecture in Gómez et al. (2020). In the fine-grained

multi-classification task between five transient classes we made a comparison

between a classification based on a CNN with images and the classification

on light curves with a random forest with 200 trees based on the work by

Neira et al. (2020). The results showed that CNN consistently has a better

performance.

Deep-TAO is public with files in a FITS format to facilitate its usability

in different projects. The realism of Deep-TAO provides and additional mo-

tivation to train new learning-based models to be used by next generation

experiments in time-domain astronomy and hopefully it will also motivate

the creation of more datasets with a similar structure: realistic, fully labeled,

open and easy to access.
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Noysena, K., Pallé, E., Kotak, R., Breton, R., Nuttall, L., Pollacco, D., Ulaczyk,

K., Lyman, J., & Ackley, K. D. 2020, 11445, 114457G

Gieseke, F., Bloemen, S., van den Bogaard, C., Heskes, T., Kindler, J., Scalzo, R. A.,

Ribeiro, V. A., van Roestel, J., Groot, P. J., Yuan, F., Möller, A., & Tucker, B. E.
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Catalina Gómez: Department of Computer Science, Johns Hopkins University,

Baltimore, MD, United States (cgomezc1@jhu.ed).

Mauricio Neira: Systems and Computing Engineering Department, Uni-

versidad de los Andes, Cra. 1 No. 18A-10, Bogotá, Colombia
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