
The Voronoi-Delaunay graph has “density gradient bias”: most lines will point in the direction
of the highest density. This makes the grid artificially anisotropic.
To circumvent this bias, I use a distance recipe that includes a weight factor for the isotropy.

Isotropized connections
with 25 nearest-neighbours

Polar diagram of the function that 
finds the isotropized nearest 
neighbours. The function is a 
combination of the linear distance r 
and the angle θ with respect to a 
fixed coordinate direction.

r(w+sin2 θ)=1 with constant w
(indicated on the contours)
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Red dots: radial flux, black line: analytic stationary solution for a sphere with 10,000 nodes, a single
source in the centre, and 1000 boundary points
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Red dots: eigenvector (node occupation values) 
of the stationary solution for a sphere with 
10,000 nodes, a single source in the centre, 
1000 boundary points, and 50 isotropic neighbours

Systematic difference between 
the eigenvector values in the 
Voronoi-Delaunay nearest-
neighbour node distribution 
and the isotropic case

Systematic difference between 
the radial flux values in the 
Voronoi-Delaunay nearest-
neighbour node distribution 
and the isotropized case

Sphere with 100 nodes, with
Voronoi-Delaunay connections, 
surrounded by 50 boundary points

Example of a Markov matrix with
only four nodes, one of which is a
source (white) and one is a sink
(black). The yellow arrow represents
the radiation that is fed back to the source to create a stationary solution.
This is merely a computational trick and has no consequences
for the relative values of the eigenvector

Summary
Photons are our main research tool. Therefore, mastery of
radiative transfer is essential. Another truism is, that the
necessary equations look innocuous but are very hard to solve quickly
in practical cases. Especially when radiation has hydrodynamical consequences,
this is a serious problem. Our SimpleX algorithm (Ritzerveld & Icke 2006) transports
parcels of radiation along lines connecting points (nodes) that represent the scattering
medium. We make suitable choices for (1) the node distribution, (2) their connectivity,
(3) their scattering and absorption properties, (4) sources and boundaries (sinks).
The transport problem is then cast into the form of a classical Markov process.
Inversion of the Markov matrix yields the stationary solution of the corresponding
radiative transfer problem. By making judicious use of the sparseness of the matrix,
this method was made to run extremely fast. Furthermore, the eigenvalue spectrum
of the transport matrix is a sharp tool for judging the robustness of the solution.
Ritzerveld, J. & Icke, V., 2006 Phys.Rev.E, 74, 026704

Conclusion
The Markov-Process variant of the SimpleX

tessellation-based algorithm for radiative
transfer is robust, fast, and realistic. 

Future
After completion of this phase of the project, we will refine our hydrodynamical models
by dynamically coupling the hydro and radiation into a true radiation-hydrodynamics code.

Ask Me
This is a poster, i.e. an

advertisement. For details
and demos of the real thing,
please contact me, either at
this meeting or by mailing
icke@strw.leidenuniv.nl

Computational Considerations
The Markov matrix associated with the SimpleX

algorithm is extremely sparse. Typically, each 
network node has of the order of 25 connecting

lines, so that a realistic representation of an
astrophysical situation corresponds to an NxN

matrix with only 25N nonzero entries. Such a very
sparse array resembles a vector more than a full

matrix. The chosen diagonalisation algorithm
(Van der Vorst, 1991) is so fast that finding the

eigenvectors and eigenvalues uses almost no
time compared to the other computational steps,

in  particular building the radiative transfer network.

The Basic Algorithm
I have formulated the SimpleX algorithm for radiative transfer as a stationary Markov
process. In this algorithm, parcels of radiation are shuttled along lines connecting points
(nodes) that represent the scattering medium. By choosing suitable connections between
sources and boundary points, this problem can be cast into the form of a classical Markov
process. Inversion of the Markov matrix then yields the stationary solution of the
corresponding radiative transfer problem. By making judicious use of the sparseness
of the matrix, this method was made to run extremely fast.
The grid is fully connected. Unless the trasnsition probabilitiess are very contrived,
the Markov matrix has distinct eigenvalues and therefore is diagonalizable.
The sum of the row entries is 1 to guarantee photon conservation. So there will be
one eigenvector with eigenvalue 1, the steady state.
If the matrix is fully reciprocal, the steady state value is trivial: it is  proportional to
the number of lines at each node. When sources and sinks are added, the solution is non-trivial.

SimpleX represents the optical density by a point process. These points (nodes) are connected
by a suitable nearest-neighbour scheme. What is “nearest” depends on the choice of distance 
recipe, e.g. plain linear distance (Voronoi-Delaunay graph), mean free path, percolation length,
isotropy-weighted linear distance, or anything else that is useful.
The radiation is then transported along the lines of the resulting conectivity graph.


