3D Radiative Transfer in Eta Carinae:

the SimpleX Radiative Transfer Algorithm Applied to 3D SPH Simulations of Eta Car's Colliding Winds

Nicola Clementel

Thomas Madura², Chael Kruip¹, Vincent Icke¹, Theodore Gull²

¹ Leiden Observatory, Leiden University ² Astrophysics Science Division, NASA Goddard Space Flight Center

APN VI, Riviera Maya - Mexico, 7 November 2013

death of ordinary star Extraordinary

Extraordinary "near death" of extraordinary star

HST image of Eta Carinae (NASA, ESA, and the Hubble SM4 ERO Team) with artist's conception (A. Damineli, <u>www.etacarinae.iag.usp.br</u>)

Eta Carinae

	ηΑ	ηΒ
Mass (M_{\odot})	90	30
Radius (R_{\odot})	60	30
$\dot{M} (10^{-4} M_{\odot}/yr)$	8.5, 4.8, 2.4	0.14
v_{∞} (km/s)	420	3000
e	0.9	
a (AU)	15.45	
P (days)	2024	

An Ideal Astrophysical Laboratory for:

- Massive Stars Formation and Evolution
- SN Impostors-Progenitors
- Bipolar Nebulae
- Dust Formation
- Colliding Wind Binaries
- Stellar Mass Loss
- Radiative Transfer

3D SPH Simulations

Madura et al. 2013

3D SPH Simulations

SimpleX

- Naturally adapts its resolution to the relevant physical scales
- Compatible with grid base and particle base hydrodynamics codes
- Computationally cheap because of the local nature of the Delaunay transport
- Parallel

- Post-processing
- Every SPH particles as a node
- Delaunay Triangulation Field Estimator

SimpleX

- Naturally adapts its resolution to the relevant physical scales
- Compatible with grid base and particle base hydrodynamics codes
- Computationally cheap because of the local nature of the Delaunay transport
- Parallel

- Post-processing
- Every SPH particles as a node
- Delaunay Triangulation Field Estimator

SimpleX Mesh

Influence of He

- Snapshots at apastron
- Evolution time = 3 months
- ηB luminosity = 3.02 × 10⁴⁹ photons s⁻¹ (O5 giant with T_{eff} \approx 40000 K)
- nHe / nH = 0.2

Clementel et al. 2014 in prep.

Collisional Ionization

Mass Loss

He Ionization

Future works

Short term:

- Multi-cycle HST Observing Program through 2015
 - Create synthetic observation
 - Model Forbidden line emission on different phases

Long term:

• Full radiation-hydrodynamics simulations

