Dust polarisation and magnetic field geometry in Proto Planetary Nebulae

L. Sabin, Q. Zhang, A. A. Zijlstra, N.A. Patel, R. Vázquez, B. A. Zauderer, M. E. Contreras and P. F. Guillén
The sample

CRL 618
C-rich
~200 yrs

OH 231.8+4.2
O-rich
~770 yrs
The method

- **Dust continuum emission polarisation mapping**: Principle of alignment of non-spherical spinning dust grains with their long axis perpendicular to the magnetic field.

- **Submillimeter Array in polarimetric mode (interferometry - 8 antennas)**

 Compact configuration: Max. baseline ~70m; 2.5" at 345 GHz

 LSB: ~ 330-334 GHz; USB: ~342-346 GHz
CRL 618

Continuum:
Synthesised beam: 2.2" x 1.9 \(^{\prime\prime}\), PA= -77.6
\(\sigma_I=19.8\) mJy/beam, \(\sigma_Q,U= 2.2\) mJy/beam

Peak intensity: 3.4 Jy/beam
Mean intensity: 1.2 Jy/beam
Linear polarization intensity > 3σ (peak: 4.4σ)
Low P% (<~ 1%)
Mean PA = 96°

- Well defined and organised polar magnetic field.
Continuum:
Synthesised beam: 2.5" x 1.9 ", PA= -77.6
σI=20.5 mJy/beam, σQ,U= 4 mJy/beam
Peak intensity: 0.78 Jy/beam
Mean intensity: 0.31 Jy/beam
OH 231.8+4.2

Four polarised areas.
Linear polarization intensity > 3σ (peak: 4σ)
Higher P% with Peak: 15.6 %, Mean: ~4.3%
X-shaped distribution -> dipole configuration
Possible toroidal configuration.

► Well defined and organised dipole/poloidal magnetic field.
A magnetic launching mechanism?

- Good alignment of the B-Field vectors with CO outflows in both PPNe.
- Dynamical poloidal field at small scale (close to CS) ➤ outflow launching!?
- Whether the field is dragging and collimating the flow or is dragged is still unclear with the actual data.
Main Findings & Conclusions (I)

- Well organised poloidal magnetic fields are found in CRL 618 and OH 231.8+4.2 (X-shaped)

- P% higher in O-rich than C-rich ► Chemistry dependant (nature and size of the dust grains)

- No detection of molecular line polarisation (Goldreich-Kylafis effect) above 3σ.

- An “evolutionary pattern” of the Bfield configuration is observed ►
Findings & Conclusions (II)

Magnetic distribution vs Evolutionary stage

- PPNe tend to show polar/dipole field configuration while PNe tend to show toroidal configuration (Sabin, Zijlstra & Greaves, 2007)

- Single initial configuration: transition via rotation

- Coexisting configurations: B_{Pol} declines faster ($1/r^2$) than B_{Tor} ($1/r$) (see also Vlemmings, IAU 2010)

![Diagram showing magnetic field configurations and transitions]
Future works

- More detailed polarimetric observations.
- ALMA in polarisation mode: Depth and Speed
- Accurate measurements of magnetic strength.
 - In the CS via spectropolarimetry?
 - Via masers?