HOST GALAXIES OF HIGH REDSHIFT QUASARS

Jari Kotilainen
Tuorla Observatory, Univ. Turku

Renato Falomo Padova
Aldo Treves Como
Marzia Labita Como
Riccardo Scarpa IAC
Michela Uslenghi Milano
LOW REDSHIFT QUASAR HOSTS

luminous (massive) bulge-dominated galaxies

products of successive mergers?

inactive BHs in nearby massive bulges
quasar = accretion onto BH

=> all massive galaxies have been quasars?
BH accretion rate vs cosmic SFR history

⇒ formation and evolution of BHs and galaxy bulges strongly linked

⇒ crucial to study high z quasars and their hosts
Space excellent PSF

small collecting area and FoV

Ground very good PSF

large collecting area and FoV

$z = 1.5$
QUASAR HOSTS AT HIGH REDSHIFTS

• 17 luminous and 15 low luminosity quasars (VLT+ISAAC)
claims for host detection at $z > 2$

two RLQ and two RQQ hosts (VLT+NACO); up to $z \sim 2.9$

$z = 2.55$
Nuclear vs host galaxy luminosity

RLQ nuclei are redder in U-R than RQQs

differential extinction by dust?

intrinsic difference in SEDs? (e.g. synchrotron component in NIR)

R-band better tracer of L_{bol} than U-band?

reasonable correlation for RLQs

narrow distribution of Eddington ratio

scatter due to dispersion in $M_{\text{BH}} - M_{\text{bulge}}$ and varying accretion rate?
Evolution of quasar hosts

no decrease in luminosity? => massive BHs in place by \(z = 3 \)

=> early epoch for the latest major merger

decrease in luminosity at \(z = 2.5 \) ?

=> evidence for tight quasar - host co-evolution
need high S/N and spatial resolution

NGS AO systems do not allow sizeable samples

need very close reference + PSF stars

1) luminous quasars: AO
VLT + NACO + LGSF (P78 =>)

2) low luminosity quasars: non-AO
large FoV => many PSF stars => accurate PSF shape
16 RQQs with VLT + ISAAC (P77)
AND: EVOLUTION OF $M_{\text{BH}} - M_{\text{bulge}}$ CORRELATION

- High z inactive galaxies: M_{bulge} easy, M_{BH} impossible
- High z quasar hosts: M_{bulge} difficult, M_{BH} easy

$$v_{\text{BLR}} + R_{\text{BLR}} \Rightarrow \text{virial } M_{\text{BH}} = v_{\text{BLR}}^2 R_{\text{BLR}} G^{-1}$$

v_{BLR}: FWHM of BLR emission lines
R_{BLR}: continuum luminosity

ESO 3.6m/EFOSC2: spectra of resolved quasars at $z > 1$
images $\Rightarrow M_{\text{bulge}}$, spectra \Rightarrow virial M_{BH}

Sept 2005, Mar 2007 18 quasars
more to come: Sept 2007 5 N