Dust and the far-UV break observed in the energy distributions of Quasars

Sinhue Haro-Corzo
Yair Krongold
Anja Andersen
connection between far-UV and X-rays?

• Are soft-X rays a simple extrapolation of the far-UV powerlaw?
 – Haro-Corzo et al. (2007)
 – this afternoon

• “Composite” spectra are not always an ideal tool what about individual spectra?
 – in the X-rays?
 – in the far-UV
1. BELR sees a different SED?
2. a bump is hidden in the EE--UV
3. UV-break due to absorption
 • recovery at high energy

BELR:
- photoionization models favor a much harder SED
- example: “Locally optimally emitting Clouds” models of Baldwin et al.
- Korista et al.
- Casebeer et al.
- Divorce between models and observations

far-UV index of ~1.7
- much too soft SED!
- EW of HeII, CIV, NV hard to reproduce

(Korista et al. 1997)
spectral index α

$$F_\nu \propto \nu^{\alpha}$$

$$\nu F_\nu \propto \nu^{\alpha+1}$$

$$\lambda F_\lambda \propto \lambda^{-(\alpha+1)}$$

Telfer's composite SED

same composite SED
spectral indices from individual quasars

- Telfer’s sample,
 - UV break \(\sim 1100\text{Å} \)
 - mean indices:
 - \(\alpha_{\text{NUV}} \approx -0.7 \)
 - \(\alpha_{\text{FUV}} \approx -1.7 \)
- Ton 34
 - extremely UV deficient
 - \(\alpha_{\text{NUV}} = -0.3 \)
 - \(\alpha_{\text{FUV}} = -5.3 \)
extreme UV deficiency of Ton 34

1. IUE SWP
2. IUE LWP
3. HST-FOS
4. Palomar
 (Sargent et al.)
 - normal near-UV line spectrum
 - very unusual in the extreme UV
 - better data needed

(paper with Y. Krongold submitted)
solution: existence of a flux rise or recovery in the extreme-UV?

- maybe continuum picks up in the extreme-UV?
- could the UV break be a localized feature?
- which mechanisms may cause such a localized UV trough?
HI : Lyα … + Lyman continuum

intergalactic absorption

intrinsic screen

disk photosphere

accelerated outflow

HI : Lyα … + Lyman continuum

dust absorption

1. jump not seen
2. too sharp edge
3. fit so-so
4. too much dust?

Eastman, MacAlpine, Richstone

A. too much dust
B. IR emission?
C. dust destroyed?
D. not needed

not useful
conclusions

1. intrinsic crystalline C dust, promising:
 - infrared re-emission
 • rules out meteoritic flavor
 • compute bulk impurities of N, O
 – in progress: Anja Andersen
 - polarization vs lambda
 • model scattering using proper transfer code?

2. accretion disk photosphere
 • cooler emission from line driven wind

3. accelerated outflow?
 - speculative but tantalizing

GOAL: reconcile line emission spectrum with observed SED
1- extragalactic HI absorption (WHIM)

predicted jump is NOT observed

predicted jump is NOT observed
A-intergalactic dust

- requires too much dust
- carbon crystallites only

\[\alpha_{\text{EUV}} \text{ vs. redshift } z \]

\[\alpha_{\text{FUV}} \]

rest-frame

redshift
3- problem of SEDs from current accretion disk models

• photospheric models
 – Hubeny et al.
• accretion disks do predict break near Lyman limit
 – does not fit too well observed break
 – too soft an SED to account for high ionization emission lines

Hubeny et al. (2000)
line driven wind
launched wind may induce a cooler emission gas component
4-accelerated outflow

- gas condensations accelerated up to 0.8 c
- model could be modified so that
 - break could be blueshifted by 0.1c
 - determine where the flux recovery occurs in the extreme-UV
B-crystalline carbon extinction

- Shang et al. (2005) explored SMC-like and ISM dust
 - such dust does NOT fit UV break
- crystalline carbon grains
 - extinction very “peaky” in the far-UV
 - can fit UV break (see later)
 - was found in 3 stellar disks around emission line stars
- formation processes:
 - nucleation of organic ice mixtures by UV photolysis (Kouchi et al. 2005)
 - UV conversion of PAH clusters (Duley & Grishko 2001).
dust model based on carbon crystallites

- small size regime
 - grain radii 2.5–25 Å
- 2 types of crystallite diamonds
 - terrestrial cubic diamond
 - nanodiamonds from meteorite Allende
examples of quasars with evidence of far-UV recovery at 18.5eV (670Å)

- PG 1008+1319 \(z_q = 1.287 \)
- Pks 0232-04 \(z_q = 1.45 \)
- HS 1307+4617 \(z_q = 2.129 \)

extinction predicts a flux recovery in the extreme UV

where is energy re-emitted?

- Feature not observed in 3C298 (Spitzer data)
- Rules out meteoritic type of carbon crystallites

\[\log \nu L_\nu \]

\[\log \nu \]

\[\text{where is energy re-emitted?} \]

- Meteoritic nanodiamonds

\[\text{de Diego et al. 2007} \]

\[\text{Flux (10}^{-19} \text{W cm}^{-2} \mu \text{m}^{-1}) \]

\[\lambda (\mu \text{m}) \]

3C 298
Must use then cubic type only, but wider range of grain sizes

- curve D3
 - grain size range must extend from 3 to 200 Å to fit the UV break

\[\text{crystalline C} \]
\[\text{size 3–200 Å} \]
dust abs. fits UV break in individual quasar spectra

- example: PG1148+459
- assuming curve D3
 - cubic nanodiamond grains only
 - size distr. ($a^{-3.5}$)
 - range 3–200 Å
 - Haro-Corzo et al. (2007)