Kinematics and dynamics of the M51-type galaxy pair NGC3893/96
Collaborators

Isaura Fuentes-Carrera: Observatoire de Paris-Meudon, France

Ruslan Gabbasov: Instituto de Astronomía, UNAM, México

Philippe Amram: Laboratoire de Astrophysique de Marseille, France

Heikki Salo & Eija Laurikainen: Department of Physical Sciences, Univ. Of Oulu, Finland

Based on Fuentes-Carrera et al. (2007: In press A&A)
The interaction of galaxies as an important ingredient in their formation and evolution.

- Morphology and Inner Structure

- Star Formation and Nuclear Activity
Why is it important to study interacting galaxy pairs?

Simplest system of galaxies

Information on the DM halo structure as well as the mass-to-luminosity (M/L) ratio

Evolution of galaxies in compact groups, groups and clusters
Use kinematical and dynamical studies of isolated interacting galaxy pairs in order to:

- Determine if a pair is physical or not

- Analyse the suppression and/or formation of structure

- Determine the stage of the interacting process and the interaction parameters

- Constraint the values of the M/L of isolated interacting pairs + information on the structure of the DM halo
Observations

2.12 m telescope at the Observatorio Astronomico Nacional in San Pedro Mártir, México

Scanning Fabry-Perot interferometer PUMA (Rosado et al 1995)

1024 x 1024 TEK CCD
$\text{bin}=2$
$\text{scale}=1.18\text{``/pix}$

Interference order = 330 at H$_\alpha$
of channels=48
FSR=19 A (914 km/s)
$t_{\text{exp}}=120\text{ s per channel}$

Redshifted H$_\alpha$ line
What does a scanning Fabry-Perot interferometer do???

A certain radial velocity value is associated with each λ (Doppler effect).
A scanning Fabry-Perot interferometer allows us to get **ACCURATE RADIAL VELOCITIES** of EXTENDED OBJECTS.
FP Spectroscopy: A High Spectral Resolution Profile for Each Pixel:
PUMA Instrument
ADHOCw software (J. Boulesteix)
http://www.observatoire.cnrs-mrs.fr

CIGALE reduction package
(Le Coarer et al. 1993)
* Mass Estimates

Mass within radius R, $M(R)$

$$ GRavitational\ Force = Centripetal\ Force $$

$$ M(R) = \frac{V^2(R)}{G} \times R $$

Lequeux 1983: The mass distribution in a disk galaxy lies between the mass given by a spheroid and that given by a disk distribution.

$$ M(R) = (0.6 \ to \ 1.0) \times \frac{V^2(R)}{G} \times R $$
* M/L and DM halo structure in interacting galaxy pairs: KPG 302.

M51-type galaxy pair

D = 18.6 kpc

NGC 3893.... Sc
NGC 3896.... Sm

HI observations by Verheijen & Sancisi (2001)
KPG 302: HI envelope
RC of NGC 3896
\[M = 5 - 8 \times 10^8 \, M_\odot \]
* Velocity Field of NGC 3893

VELOCITY FIELD OF NGC 3893.

Strong black line represents the galaxy's PA, thin lines show the sector angle considered for the computation of the rotation curve.
* Multi-wavelength rotation curve

Black crosses: Hα observations with PUMA

White dots: HI observations (Verheijen & Sancisi 2001)
Pseudo-isothermal

NFW

Only points with circular motions
Pseudo-isothermal

NFW

All points
Fits with realistic M/L

Pseudo-isothermal

NFW

Only optical points
<table>
<thead>
<tr>
<th>Type of halo</th>
<th>Maximal disc</th>
<th>$(M/L)_{\text{disc}}$ (I band)</th>
<th>R_0 (kpc)</th>
<th>ρ_0 (M_\odot/pc^{-3})</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-wavelength curve, non-circular motions excluded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-ISO</td>
<td>no</td>
<td>0.940</td>
<td>1.570</td>
<td>0.340</td>
<td>1.34</td>
</tr>
<tr>
<td>p-ISO</td>
<td>yes</td>
<td>1.250</td>
<td>2.000</td>
<td>0.210</td>
<td>1.53</td>
</tr>
<tr>
<td>NFW</td>
<td>no</td>
<td>0.240</td>
<td>7.160</td>
<td>0.075</td>
<td>1.43</td>
</tr>
<tr>
<td>NFW</td>
<td>yes</td>
<td>1.250</td>
<td>7.100</td>
<td>0.050</td>
<td>2.60</td>
</tr>
<tr>
<td>Multi-wavelength curve, non-circular motions included</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-ISO</td>
<td>no</td>
<td>1.050</td>
<td>1.100</td>
<td>0.710</td>
<td>2.16</td>
</tr>
<tr>
<td>p-ISO</td>
<td>yes</td>
<td>1.250</td>
<td>1.500</td>
<td>0.310</td>
<td>1.83</td>
</tr>
<tr>
<td>NFW</td>
<td>no</td>
<td>0.070</td>
<td>4.650</td>
<td>0.160</td>
<td>1.72</td>
</tr>
<tr>
<td>NFW</td>
<td>yes</td>
<td>1.250</td>
<td>7.100</td>
<td>0.050</td>
<td>2.60</td>
</tr>
<tr>
<td>Hα curve, non-circular motions included</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-ISO</td>
<td>no</td>
<td>0.560</td>
<td>1.090</td>
<td>0.900</td>
<td>1.09</td>
</tr>
<tr>
<td>NFW</td>
<td>no</td>
<td>0.560</td>
<td>10.100</td>
<td>0.040</td>
<td>0.96</td>
</tr>
<tr>
<td>HI curve, non-circular motions excluded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-ISO</td>
<td>yes</td>
<td>1.750</td>
<td>2.600</td>
<td>0.079</td>
<td>1.32</td>
</tr>
<tr>
<td>NFW</td>
<td>yes</td>
<td>1.745</td>
<td>7.000</td>
<td>0.030</td>
<td>3.17</td>
</tr>
</tbody>
</table>
Table 4. Mass estimates for NGC 3893 and NGC 3896

<table>
<thead>
<tr>
<th>Galaxy</th>
<th>R_{mass} (kpc)</th>
<th>R_{mass} ($D_{25}/2$)</th>
<th>$M(R_{mass})$ ($10^{10} M_\odot$)</th>
<th>Mass ratio from RC within 0.4 $D_{25}/2$</th>
<th>Mass ratio from NIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 3893</td>
<td>10.8</td>
<td>0.99</td>
<td>5.00 to 8.40</td>
<td>0.025 to 0.026</td>
<td>0.0314</td>
</tr>
<tr>
<td>NGC 3896</td>
<td>1.5</td>
<td>0.4</td>
<td>0.05 to 0.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geometry of the encounter considered for the simulations
Simulation 1

- N-body: 10000 in disk and 60000 in halo
- Host: disk+NFW halo, without gas
- Satellite: point mass $M_S/M_H = 1/50$
- Elliptic orbit ($e=0.79$)
- Time unit = 250 Myr
- No grand design spiral pattern is produced after one revolution
Simulation 2

- N-body: 10000 in disk and 60000 in halo
- Host: disk+NFW halo, without gas
- Satellite: point mass $M_S/M_H = 1/10$
- Elliptic orbit ($e=0.79$)
- Time unit = 250 Myr
- The system develops grand design spiral arms
- But: it merges too fast (within 500 Myr)
* Conclusions

Extended kinematical (3D) and photometric information essential to study the interacting process between galaxies

Importance of detailed information on the inner kpc of the rotation curve of interacting galaxies: H\(\alpha\) scanning F-P observations

Information on the outer parts of interacting galaxies in order to study their mass distribution and (faint) interacting features
Conclusions

In the case of KPG 302, we cannot distinguish between NFW and pseudo-isothermal DM haloes.

It is possible that the DM halo differs from that of a single galaxy and that NGC 3893 and NGC 3896 share a common halo.
* Conclusions

Preliminary numerical simulations of this encounter show that the mass of the satellite cannot be too high.

We expect that the inclusion of gas in the simulation helps to produce HI envelope and grand design spiral pattern of the host.
¡FELICIDADES DEBORITA!