

International Centre for Radio Astronomy Research

Star formation and gas supply

Barbara Catinella

Galaxy evolution in a bathtub

see also, e.g. Bouche' et al. (2010), Dave' et al (2011, 2012), Krumholz & Dekel (2012)

Still a lot of work to do to understand how gas cycles in and out of galaxies

Star formation cycle

Need large representative sample with homogeneously measured gas content (atomic and molecular) and SFR

Cold gas surveys of massive galaxies

GASS: the GALEX Arecibo SDSS Survey

Arecibo large program: 1005 hrs, 760 galaxies (Catinella et al.

2010, 2013). Selection:

▶ 0.025< z<0.05, 10< log M_{*}/M_⊙<11.5

▶ Gas fraction limited: M_{HI}/M_{*} > 1.5%

COLD GASS: CO Legacy Database for GASS

IRAM large program: ~500 hrs (Saintonge et al. 2011)

- ▶ Unbiased sample of 350 galaxies randomly selected from GASS
- gas fraction-limited; additional offset pointings when necessary

Both surveys now extended to $\log M_*/M_\odot = 9$

Gas scaling relations

Catinella et al. 2013 + in prep., Saintonge et al. 2011

Dissecting the SFR-stellar mass plane

Saintonge, Catinella et al. subm.

$$sSFR = \frac{SFR}{M_{\#}} = \frac{M_{HI}}{M_{\#}} \frac{M_{H2}}{M_{HI}} \frac{SFR}{M_{H2}} = \underbrace{f_{HI}}_{R_{mol}} \underbrace{SFE_{H2}}_{Mol}$$
 feeding fueling consuming

Atomic hydrogen

Saintonge, Catinella et al. subm.

- ▶ HI content varies mostly **across**, but also **along** reference sequence (RS)
- ▶ HI alone cannot explain variation of sSFR (lack of dyn range)

Molecular hydrogen

Saintonge, Catinella et al. subm.

$$f_{H2} = rac{M_{HI}}{M_{k}} rac{M_{H2}}{M_{HI}} = f_{HI} R_{mol}$$

- ▶ H₂ content varies almost only across RS
- ▶ H₂ alone cannot explain variation of sSFR

SFE is not constant

Saintonge et al. 2011

 $t_{DEP} = M_{H2} / SFR = 1 / SFE$

Molecular-to-atomic hydrogen ratio

Saintonge, Catinella et al. subm.

H₂/HI content varies **along** RS (on the RS, from 25% to >70%!!)

Cold gas in the SFR-stellar mass plane

Saintonge, Catinella et al. subm.

Position of galaxy in the SFR-M* plane depends on:

- 1. Amount of gas
 - 2. How much of it is available for SF

3. SFE

Cold gas in the SFR-stellar mass plane

 $sSFR = \frac{SFR}{M_{*}} = \frac{f_{H2}}{f_{H1} R_{mol}} SFE_{H2}$ feeding fueling consuming

Saintonge, Catinella et al. subm.

Position of galaxy in the SFR-M* plane depends on:

- 1. Amount of gas
- 2. How much of it is available for SF
- 3. SFE

Main sequence of SF galaxies

Saintonge, Catinella et al. subm.

Along the MS

- ▶ HI, H₂ fractions decrease
- ▶ SFE, H₂/HI ~ constant (t_{DEP} ~ 1.3 Gyr, R_{MOL} ~0.3)

Flattening of MS at $M_{\star}/M_{\odot} > 10^{10}$ due to gradual decrease of total gas fraction of SF galaxies

Quenching "danger zone"

Saintonge, Catinella et al. subm.

Very high H₂/HI >70%, total gas mass $\sim 10^{10}$ M_{\odot}, SFR ~ 10 M_{\odot}/yr —> w/in ~ 1 Gyr of quenching!

Unusual combination of bulge+young stellar populations in the central regions

An indirect look into the scatter

Saintonge, Catinella et al. subm.

HI excess galaxies: interesting population of galaxies with huge HI reservoirs that are not forming stars \rightarrow outliers of f_{HI} vs sSFR relation

GASS 3505: the HI excess prototype

Geréb, Catinella et al. (subm.)

HI mass $\sim 10^{10} \text{ M}_{\odot}!!$

 $M_{HI}/M_{*}=0.50$

 $M_{H2}/M_{\odot} < 0.05$

SFR= 0.1 M_☉/yr

Merger with unusually HI-rich dwarf reproduces main properties of HI disk

HI excess population

HI excess population

Large incidence of polar/misaligned disks → was the huge HI reservoir accreted?

Summary

- Large, unbiased samples of galaxies with atomic and molecular gas measurements are key to understand galaxy evolution
- ▶ Position of galaxy in the SFR-M* plane depends on
 - 1. Amount of gas
 - 2. How much of it is available for SF
 - 3. Efficiency of the conversion of this gas into stars
- ▶ Flattening of SF main sequence: decrease of gas fractions, which is accompanied by bulge build up
- ▶ Interesting populations of galaxies about to run out of gas, or with huge gas reservoirs that are not forming stars

Main sequence of SF galaxies and morphology

Saintonge, Catinella et al. subm.

On the MS, as mass increases galaxies steadily consume their gas supplies and grow more prominent bulges

Thanks! Background image: Hickson 44 Galaxy Group (NASA APOD)

Main sequence of SF galaxies

Saintonge, Catinella et al. subm.

Along the MS

- ▶ HI, H₂ fractions decrease
- ▶ SFE, H₂/HI ~ constant (t_{DEP} ~ 1.3 Gyr, R_{MOL} ~0.3)

 $sSFR = f_{HI} R_{mol} SFE_{H2}$

Flattening of MS at $M_{\star}/M_{\odot} > 10^{10}$ due to gradual decrease of total gas fraction of SF galaxies

Atomic and molecular depletion times

Stacking

