3D mapping of stellar populations as a function of environment

Daniel Thomas University of Portsmouth

Daniel Goddard, Claudia Maraston, Kyle Westfall, James Etherington, Rogério Riffel, Nícolas Mallmann, MaNGA Team

Daniel Thomas Cozumel 2016

Stellar population gradients

Cozumel 2016

MaNGA target selection

pPXF (Cappellari & Emsellem 2004) STARLIGHT (Cid-Fernandes et al) FSPS (Conroy et al 2014)

Full Spectral Fitting Code FIREFLY

Wilkinson et al 2015, 2016

Gives an array of fits, each as a combination of single-burst modes (SSPs), to get SFH, metallicity, age distribution, etc.

Daniel Thomas Cozumel 2016

Stellar Population Properties

MaNGA Id: 1-217022

log(Age(Gyr))

Errors on age and metallicity.

Daniel Thomas Cozumel 2016

Radial Gradients of Properties

Early Type Galaxy

Daniel Thomas Cozumel 2016

Comparison with STARLIGHT

Reasonable agreement for light-averaged quantities, some discrepancy for mass-weighted.

See also Wilkinson et al 2015

Daniel Thomas Cozumel 2016

Gradient with mass and type - light vs mass

• Age gradient steeper in lightweight for both types (outside-in for early-types)

• No dependence on mass

- Light-weighted Z gradient steeper for early-types (pristine gas in outskirts)
- Light-weighed Z gradient same for late-types (radially independent processing of internal gas)
- Z gradient mass dependent for both types (more so for late-types: bulge-disc transition?)

Daniel Thomas Cozumel 2016

Dependence on environment

Daniel Thomas Cozumel 2016

Central vs satellite

Daniel Thomas Cozumel 2016

Comparison with simulations

Daniel Thomas Cozumel 2016

Summary

Stellar population gradients

Mass vs light-weight

- Outside-in formation in early-types
- Rejuvenation from pristine gas in the outskirts
- Metallicity gradient mass dependent
- Residual star formation in latetypes from internal gas

No dependence on environment

MaNGA IFU survey

Daniel Thomas Cozumel 2016

Galaxy Environment

- Some galaxies too close to SDSS footprint edge to calculate environment
- No bias in mass distribution with environment

Galaxy environment

Quantify
'environment' as
local over-density
(delta) using Nth
nearest neighbour
method

 Use quartiles of environment calculation to bin galaxies into low, mid-low, mid-high, and high density environments.

Daniel Thomas Cozumel 2016

Beam Smearing

Daniel Thomas Cozumel 2016

Daniel Thomas Cozumel 2016