

università degli studi FIRENZE

The MAGNUM survey: outflows and star formation in nearby Seyfert galaxies from MUSE observations

Alessandro Marconi

Department of Physics and Astronomy University of Florence

INAF-Arcetri Astrophysical Observatory, Florence

G. Cresci, G. Venturi, S. Carniani, R. Maiolino, B. Balmaverde, J. Bland-Hawthorne, M. Brusa, A. Capetti, C. Cicone, C. Feruglio, F. Fiore, A. Gallazzi, V. Mainieri, K. Matsuoka, T. Nagao, E. Oliva, E. Sani, P. Tozzi, F. Mannucci, G. Risaliti, M. Salvato, T. Urrutia, S. Zibetti

Co-evolution of BHs and Host Galaxies

Ellipticals

- 🙀 🙀 🙀 🙀 🙀 🙀 🙀 🙀 🙀 black holes and their host galaxies (e.g. $M_{BH}-\sigma$): co-evolution
- X AGN feedback is the mechanism linking BHs to their host galaxies: causes quenching of star formation and BH accretion
- **X** Evidences for feedback? Massive outflows in ionised and molecular gas
 - large outflow rates for SFRs and gas masses (up to ~100-1000 M_{\odot}/yr , several \times SFR) \rightarrow short depletion time scale (~10⁷ - 10⁸ yr)
- 🙀 Direct evidences for outflows quenching (enhancing) Star Formation?
- What is the driving/accelerating mechanism of (molecular) outflows?

What is their impact on ISM?

500

Velocity [Km/s]

1000

-2000

-1000

Velocity (km/s)

2000

Evidences at high redshift

Results from high redshift quasars (z~2.5): evidence for fast outflows quenching star formation, AGN feedback revealed! (?)

Carniani+2015

The MAGNUM survey

- \Leftrightarrow Measuring Active Galactic Nuclei Under the MUSE microscope
- 1'×1' FOV, 0.2'' sampling (300×300 spaxels) 4800-9300 Å wavelength range
- \approx Nearby AGN (D < 30 Mpc) observable from ESO
- Seeing limited (~1"): 15 pc (@4Mpc) 115 pc (@30Mpc)
- ☆ 10 objects so far

NGC 5643: a barred Seyfert 2

Cresci, AM et al., 2015

Nuclear Outflow in NGC5643

Evidences for outflowing gas in the nuclear region:

- [OIII], [NII] asymmetric line profiles
- Diffuse radio jet from VLA (Leipski et al. 2010)
- Chandra X-ray data

Cresci, AM et al., 2015

Cozumel, 2016

Positive feedback in NGC5643?

The two "blobs":

- Show SF-like line ratios
- Are on the receding side of the dust lane
- Have high EW(Hα) → young age (~10 Myr)
- Are much closer than the SF ring around the nucleus, in the ionization cone
- Are in the direction of the outflow

Cresci, AM et al., 2015

Cozumel, 2016

Circinus galaxy

Kinematical structure in cone

Ionisation structure in cone

Marconi et al. 2016, in prep.

Matter bounded clouds?

A strong starburst & a hidden AGN...

-10

0

arcsec

-20

0

30

20

10

20

30

10

BPT diagram [NII]/H α spatial distribution

arcsec

-30

-30

NGC 1365

OIII 0.3-1.2 keV

NII/H α 2-7 keV

MUSE data of nearby AGN allow detailed studies of outflow structure (kinematics and ionisation): Velocity and ionisation structure of conical outflow in Circinus and NGC 4945

☆ MUSE data allow studying the relation between AGN and SF: Possible positive feedback in NGC 5643

 \overleftrightarrow Working on detailed modelling of kinematics and ionisation

kinematical model to infer outflow parameters

photoionisation modeling for the physical properties of ionised gas

Many complementary observations, e.g. Chandra, XMM-Newton, Galex, HST, Spitzer, Herschel, ALMA, Radio

 \overleftrightarrow Stay tuned for results in the next few weeks!

Cresci et al. 2015, Marconi et al. 2016, Venturi et al. 2016

A. Marconi

Cozumel, 2016