MIT KAVLI INSTITUTE

Suggested live twitter feed:

Remco van den Bosch @remcovdbosch · Apr 13

Torrey is scripting his own twitter feed at #galaxies2016. Either very strange or brilliant. Not sure yet.

Galaxy Mass Evolution Two Fundamentally Distinct Approaches

Population Statistics

- Stellar Mass Functions
- Cosmic Star Formation Rate Density
- Mass-Size Relation

•

Mass-Metallicity Relation

Physical Evolution

- Stellar Mass Growth
- Gas inflow/outflow
- Metal enrichment
- Feedback

Meaningful Link?

•

Stellar Mass Function Evolution

Data from: Baldry+ (2008) Moustakas+ (2013) Pérez-González+ (2008) Mortlock+ (2011) Marchesini+ (2009) Marchesini+ (2010) Lee+ (2012) Start+ (2009) Bouwens+ (2011) Bradley+ (2012)

Behroozi+ (2013)

More on this in Kevin's talk

Rank Order Analysis Link progenitors/descendants with their number density

"Constant Comoving Number Density"

van Dokkum+ (2010)

Rank Order Analysis

Constant number density evo rare.

Scattered growth rates are ubiquitous!

) Spread in SFR-MS and mergers both contribute.

See Also: Leja+ (2013) Behroozi+ (2013) Wellons+ (2015) Jaacks+ (2016) Terrazas+ (2016)

Rank Order Analysis Inferred vs. Tracked Mass Evolution in Simulations

Rank Order Analysis Number Density Evolution

• Apply General Regression $N = A \ \tilde{M}_*^{\alpha+\beta \log \tilde{M}_*} \ \exp(-\tilde{M}_*)$

Rank Order Analysis Number Density Evolution

• Apply General Regression $N = A \ \tilde{M}_*^{\alpha+\beta \log \tilde{M}_*} \exp(-\tilde{M}_*)$

• Invert for Corrected Mass Evo $m_{10}(z) = m_{10}(z, N_{z=0})$

Rank Order Analysis Number Density Evolution

10 ⁰	$M_* = 10^{\circ}$ $M_* = M_*$	Suggested Twitter Posts:	r Tree Fits m Dens
10 ⁻¹ [[©] Jd U ⁻² [M A		Beckv Smethurst @beckv1505 · 2h Torrey shows powerful derived non-constant number density evolution tracks at #galaxies2016	on
$\frac{1}{2}$ 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 0		Ángel López-Sánchez @El_Lobo_Rayado - Apr 12 Amazing! Torrey shows galaxies evolve along non-constant comovin number density tracks at #galaxies2016	g .0 2.5 3.0
		Z	-
• Ap	pply General = $A \ \tilde{M}_*^{\alpha+\beta}$	Regression $Log \tilde{M}_* \exp(-\tilde{M}_*)$ • Same Fit Applies mass rank order	s to DM halo r evolution
		Torrey+ (2015b)	

Rank Order Application Scattered Growth Rates of Compact Massive Galaxies

Rank Order Application Scattered Growth Rates of Compact Massive Galaxies

Rank Order Application

Scattered Growth Rates of Compact Massive Galaxies

About 15% undergo a major merger, and are well mixed by z=0

Rank Order Analysis Accounting for the Scatter

• Can also measure "scatter"

- Scatter can be measured and fit
- Can statistically link progenitors/ descendants while including scatter
- Suggestion: Abandon phrase "typical MW progenitor"
- Replace: "Median mass MW progenitor" *and* don't ignore scatter

Twitter live feed:

Not accounting for scatter results in a secondary form of progenitor

1.6 1.4 - ^Z 1.2 -1.0 -

Evolv

Evolving N, distribution

True Progenitors

0.8

0.6

0.4

0.2

0.0

9

Oliver Elbert @astronoliver · Apr 11

1]

bias! My legs hurt from dancing. #galaxies2016

Jeffrey Rich @astrojrich · Apr 11

Accounting for scatter: galaxies evolve along diverse paths, which can be folded into our understanding of galaxy evolution #galaxies2016

...

Torrey, Wellons+ (2016b) Wellons, Torrey+ (2016)

Illustris: Data Release

- Full dataset publicly released through www.illustris-project.org
 - ~300 TB data But smaller "chunks" of data are available through web API
 - Relational database (e.g., SDSS, Millennium)
 - Processing and analysis tools
 - All results from today reproducible and extendable...

¢	www.illustris-project.org/data/						⊂ C Q Illustris			÷	☆自	+	Â	Ø	≡
	ILLUSTRIS	ABOUT	PEOPLE	RESULTS	PRESS	IMAGES/VIDEOS	DATA ACCESS	THE EXPLO	RER GALAXY OBSERVATORY				4		

There are three primary types of data for each simulation: snapshots, group catalogs, and merger trees. In addition, certain runs and/or snapshots may have additional data catalogs. Select a simulation to browse the available data files and get direct download links:

Parent Volumes	Subboxes	Other Runs									
Simulation Name	$L_{\rm box}[M]$	[pc] N _{DM}	$m_{\rm DM}~[M_\odot]$	$m_{\rm gas} \; [M_\odot]$	N _{snap}	$N_{\rm Subfind}(z=0)$	Snaps	FoF	Subfind	SubLink	LHaloTre
Illustris-1	106.5	1820 ³	6.3×10^{6}	1.3×10^{6}	134	4366546	× .	~	×	1	×
Illustris-1-Dark	106.5	1820 ³	7.5×10^{6}	0	136	4872374	× .	1	×	× .	×
Illustris-2	106.5	910 ³	5.0×10^{7}	1.0×10^{7}	136	689785	× .	~	×	1	×
Illustris-2-Dark	106.5	910 ³	6.0×10^{7}	0	136	735751	× .	~	×	×	×
Illustris-3	106.5	455 ³	4.0×10^{8}	8.1×10^{7}	136	121209	× .	~	×	×	
Illustris-3-Dark	106.5	455 ³	4.8×10^{8}	0	136	111992	× .		×	×	×

Currently showing 6 runs with 814 total snapshots and 250.2 TB total data volume,

including 1,259,309,875 FoF groups, 1,175,372,132 Subfind groups, and 2,765,286,583,516 particles.

Web-based Exploration

No need to write code to explore -- by drilling down on interesting objects within any of these browser-based tools you can: get properties, render and explore merger trees, extract particle data cutouts from the snapshots, and see available visualizations.

Community and Support

We welcome community involvement in this project. Have some (fast) python code that performs a specific analysis task on a galaxy, and want to add it to the API so that it can be run on-the-fly? Have some (slow, complex) code that you have developed on a single halo

Nelson+ (2015)

Summary

- 1. Constant comoving number density is probably the best current method for observationally linking galaxy populations.
- 2. Galaxies do not evolve along constant comoving number density evolution tracks owing to galaxy mergers and scattered growth rates.
- 3. Non-constant comoving number density tracks can be identified and fit within simulations that recover the correct median ND evolution.
- 4. Intrinsic scatter in ND growth tracks can also be fit and apples to account for the scatter/diffusion in galaxy growth histories.
- 5. Using the ND evolution tracks prescribed in our work, improved methods for observationally linking galaxy populations can therefore be applied.
- 6. Data is public and available through <u>www.illustris-project.org</u>

Rank Order Analysis

Caveat 2: Accounting for the Scatter

Rank Order Analysis Progenitor/Descendant Mass Tracking is not symmetric!

- Descendant tracking is shallower; progenitor tracking is steeper.
- Driven by conditional probability of rapid growth based on shape of the mass function.
 - As me about this, if you're curious.
- Can be accounted for, without complication.