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Spatially-resolved archaeological mass growth histories (MGHs)

*MaNGA galaxies
(Bundy+ 2015)
analyzed with the
fossil record

software Pipe3D
(Sanchez+2016).

e |barra-Medel+
(see Poster 6)
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Spatially-resolved archaeological MGHs of MW-sized gals
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Why MW-sized gals are particularly interesting?

a) Star formation is most efficient in MWV-sized halos

5% (universal baryonic fraction)

SF Long cooling t
feedback AGN feedback

Stellar mass
assembly
efficiency

b) As a consequence of a), at MWV scales the galaxy MGHs are the lest
detached from their halo MGHs = the MGHSs of MWV-sized galaxies trace

the cosmological dark matter halo MGHis.



Cosmological numerical simulations of
MWV-sized galaxies

* N-body+ Hydrodynamics ART: Adaptive Mesh Refinement code
(Kravtsov+ 1997; 2003).

e Atomic, molecular; and metal cooling; Compton cooling/heating;
UV heating from a cosmological background.

Subgrid physics:

in cold and dense enough gas cells (Tsr, nsr)

f

Stellar feedback (SN + winds): instantaneously injected as thermal energy

Colint 10 (ApdJ, 713, 535); Avila-Reese+ 11 (Apd, 736, 134);
Gonzalez-Samaniego+ 14 (ApJ 785, 58)




Zoom-in simulations of “field’” MW-sized halos
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eParticle mass: 10% h-'Mo, 1.5-2 M particles. Spatial reso-
lution of ~100 h-'pc (allowed up to 12 refinement levels).



RESULTS: General properties (Colin,A-R+ submitted)

Eight “field” galaxies in the 2-8x/0'% Mo stellar mass range.
Nearly flat rotation curves.
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R band face-on and edge-on projections
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The disk-dominated gals are in agreement with the TE Re-Ms, feas-Ms, js-M
relations of disk gals. All agree with the semi-empirical Ms-M;, relation.
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Spatially-resolved MGHSs normalized to the z=0 masses

(Avila-Reese+, in prep.)
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At each radial bin we 3 203 ]
calculate different MGHs: Y R
/) accumulated mass as a function of time in stars formed in the
given radial bin (it takes into account stellar mass losses).
2) accumulated mass as a function of time in stars as measured

in a given radial bin (stars formed in situ + stars aggregated from outside - lost stars)

3) cumulative age distribution of stars as measured at z=0 in a
given radial bin (they are therein today but could have been formed in other place)




‘ |) In-situ normalized MGHs at different radial bins defined at z=0 (in units of R5).

Qutside-in formation.
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‘2) Current normalized MGHs at different radial bins defined at z=0 (in units of Ri)

Outside-in formation. In-situ and current MGHs are similar for disk-dominated gals.

For E gals, after the mergers the current MGHs tend to become homogenous.
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‘ 3) Archaeological normalized MGHs at different radial bins defined at z=0

Outside-in formation (less for E/SO galaxies)
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Current normalized MGHs at different radial bins defined at z=0 (in units of Ri))

Outside-in formation. Archaeological and current MGHs are similar for disk-dominated gals.
For E gals, after the mergers the current MGHs tend to become homogenous.
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The LCDM-based
simulations

Archaeological normalized MGHs: sims vs obs

The inferences from MaNGA
(Ibarra-Medel+ 2016, poster 6)
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i - MGHs from CANDELS

_ : observations of disk MW-sized
5 — — total —

[ moss > 2 kpe _ galaxies at different z’s (van Dokkum
SRR . +2013)
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Conclusions

e Simulated disk-dominated MW-sized galaxies assemble
their stellar mass from inside to out.

¢ The spatially-resolved MGHs measured for stars formed
in-situ, for all stars, and those inferred archaeologically (as
from observations) are similar. Therefore, the effects of
migration and ex situ star formation in the simulations are
small.

e Spheroid-dominated MW-sized galaxies assemble from
inside to out but after the merger(s) the radial MGHs tend to
become more homogenous.

e The spatially-resolved MGHs of MW-sized disk galaxies
inferred 1) by means of the fossil record method from
MaNGA, and 2) by observations at different z’s are in

agreement with the simulations.




For S gals, Ms and Mpar follow Myir since the last 7-10 Gyr

-1.5 -

log (Mbar/Mvir)




