Dissecting the Radial Mass Assembly Histories of Plausibly New Elliptical Galaxies

Daniel H. McIntosh

UMKC Galaxy Evolution Group Department of Physics & Astronomy U.Missouri-Kansas City Tim Haines (UWisc), w/ Sánchez,Tremonti, Rudnick

The Interplay Between Local & Global Processes in Galaxies

Cozumel, Mexico

April 15, 2016

Credit: Hubble Heritage

Motivation: study "pet objects" to understand key processes

these major mergers occur today, but how identify recent remnants, or recent ULIRGs?
10x more common than PSBs (e.g., Darg+10 vs. Goto+07) typ. ~bimodal mass (most PSBs logM<10 Msun)

<u>"Major" Merging</u> = the gravitational interaction of two ~equal-mass galaxies and the subsequent coalescence and production of one larger galaxy.

Motivation: study "pet objects" to understand key processes

these major mergers occur today, but how identify recent remnants, or recent ULIRGs?
10x more common than PSBs (e.g., Darg+10 vs. Goto+07) typ. ~bimodal mass (most PSBs logM<10 Msun)

- buildup of 10¹⁰-10¹¹Msun, quenched ellipticals continues RQEs @ centers of small groups (McIntosh+14) favored environment for these mergers (Hopkins+10) <u>"Major" Merging</u> = the gravitational interaction of two ~equal-mass galaxies and the subsequent coalescence and production of one larger galaxy.

Motivation: study "pet objects" to understand key processes

 these major mergers occur today, but how identify recent remnants, or recent ULIRGs?
10x more common than PSBs (e.g., Darg+10 vs. Goto+07) typ. ~bimodal mass (most PSBs logM<10 Msun)

- buildup of 10¹⁰-10¹¹Msun, quenched ellipticals continues RQEs @ centers of small groups (McIntosh+14) favored environment for these mergers (Hopkins+10)

mergers tied to a number of key evolutionary processes
AGN triggering (Springel+05, Ellison+13, Satyapal+14)
SF triggering (Renaud+14, Combes & others talks ...)
morpho transformation, quenching & galaxy bimodality
(e.g., blue-into-red: Bundy+06, Faber+07, Hopkins+08)

<u>"Major" Merging</u> = the gravitational interaction of two ~equal-mass galaxies and the subsequent coalescence and production of one larger galaxy.

Experiment: search for young cores in plausible new ellipticals

64,000 high-mass, z<0.08 galaxies (McIntosh+14)

Elliptical

Experiment: search for young cores in plausible new ellipticals

64,000 high-mass, z<0.08 galaxies (McIntosh+14)

Experiment: search for young cores in plausible new ellipticals

64,000 high-mass, z<0.08 galaxies (McIntosh+14)

<u>Selection</u>: 12 with z < 0.03 sampling these morphs

plausible qualitative time sequence since merging

McIntosh - Mass Assembly of Plausible New Ellipticals - Apr. 2016

Method: dissect radial SFHs to probe mass assembly

Track 2 important stellar age indicators from core to several R_{50}

Method: dissect radial SFHs to probe mass assembly Haines*1, DHM et al. 2015, MNRAS, 451, 433 * UMKC MS thesis, 1(UWisc)

<u>Qualitatively</u> distinguish several different SFHs following Kauffmann+03

Suite of model indices spanning many SFHs SEDs from impro code (Moustakas+13) convolved with SSP SEDs from B&CO3 spanning their full metallicity range

Method: dissect radial SFHs to probe mass assembly Haines*1, DHM et al. 2015, MNRAS, 451, 433 * UMKC MS thesis, 1(UWisc)

<u>Qualitatively</u> distinguish several different SFHs following Kauffmann+03

SEDs from impro code (Moustakas+13) convolved with SSP SEDs from B&C03 spanning their full metallicity range

Method: dissect radial SFHs to probe mass assembly Haines^{*1}, DHM et al. 2015, MNRAS, 451, 433 * UMKC MS thesis, ¹(UWisc)

<u>Qualitatively</u> distinguish several different SFHs following Kauffmann+03

Suite of model indices spanning many SFHs SEDs from impro code (Moustakas+13) convolved with SSP SEDs from B&CO3 spanning their full metallicity range

Different SFHs Have Different Radial Behavior

Organized by region in which most of indices are found:

McIntosh - Mass Assembly of Plausible New Ellipticals - Apr. 2016

McIntosh - Mass Assembly of Plausible New Ellipticals - Apr. 2016

consistent with recent gas-rich major merging

McIntosh - Mass Assembly of Plausible New Ellipticals - Apr. 2016

Common Morpho-Struct-Color Samples Miss Rare Objects that May Provide Best Insights into Key Evolutionary Processes

McIntosh+14

Common Morpho-Struct-Color Samples Miss Rare Objects that May Provide Best Insights into Key Evolutionary Processes

Sufficient number density to explain expected red growth at late cosmic time.

 $2.7 - 4.7 \times 10^{-5} h^3 \,\mathrm{Mpc}^{-3}$

McIntosh - Mass Assembly of Plausible New Ellipticals - Apr. 2016

Common Morpho-Struct-Color Samples Miss Rare Objects that May Provide Best Insights into Key Evolutionary Processes

Sufficient number density to explain expected red growth at late cosmic time.

 $2.7 - 4.7 \times 10^{-5} h^3 \,\mathrm{Mpc}^{-3}$

McIntosh - Mass Assembly of Plausible New Ellipticals - Apr. 2016

Summary: study "pet objects" to better understand key processes

- Unusual blue ellipticals with weak tidal signatures tend to have radial SFHs that are <u>inconsistent</u>* with predictions of the modern merger hypothesis.
- Highly-disturbed spheroids (with strong tidal features) are likely gaseous major mergers, but strong central starbursts are not the norm*.
- A fraction of green-valley ellipticals are recently quenched.
- IFU data + detailed SFH and kinematic modeling are necessary to thoroughly understand the recent assembly histories of plausibly transitioning galaxies.

Takeaway 2: IFU data needed to understand rare (<1%) transitional objects; thus, crucial to increase their survey sampling!

caveat: based on small # statistics

CALIFA SURVEY Calar Altó Legacy Integral Field spectroscopy Area survey

Suite of model indices spanning many SFHs

SEDs from impro code (Moustakas et al. 2013) convolved with SSP SEDs from B&C03 spanning their full metallicity range

Suite of model indices spanning many SFHs

SEDs from impro code (Moustakas et al. 2013) convolved with SSP SEDs from B&C03 spanning their full metallicity range

Suite of model indices spanning many SFHs

SEDs from impro code (Moustakas et al. 2013) convolved with SSP SEDs from B&C03 spanning their full metallicity range

Suite of model indices spanning many SFHs

SEDs from impro code (Moustakas et al. 2013) convolved with SSP SEDs from B&C03 spanning their full metallicity range

Suite of model indices spanning many SFHs

SEDs from impro code (Moustakas et al. 2013) convolved with SSP SEDs from B&C03 spanning their full metallicity range

Suite of model indices spanning many SFHs

SEDs from impro code (Moustakas et al. 2013) convolved with SSP SEDs from B&C03 spanning their full metallicity range

Qualitatively distinguish several different SFHs following Kauffmann et al. 2003

Radial indices of each galaxy in our sample are typically confined to a single region.

Red-red ("dry") merger to a green-valley object?

a dry merger (DHM et al. 2008)

would conserve color of lower-mass progenitors

BEFGH

typ g-r color error = 0.04mag

4 of 5 have g-r w/in 1 sig error of blue/red selection