Implications of the metallicity dependence of Wolf-Rayet winds

John J. Eldridge, Jorick S. Vink

Queen's University Belfast and Keele University.

Aims: Recent theoretical predictions for the winds of Wolf-Rayet stars indicate that their mass-loss rates scale with the initial stellar metallicity in the local Universe.We aim to investigate how this predicted dependence affects the models of Wolf-Rayet stars and their progeny in different chemical environments. Methods: We compute models of stellar structure and evolution for Wolf-Rayet stars for different initial metallicities, and investigate how the scaling of the Wolf-Rayet mass-loss rates affects the final masses, the lifetimes of the WN and WC subtypes, and how the ratio of the two populations vary with metallicity. Results: We find significant effects of metallicity dependent mass-loss rates for Wolf-Rayet stars. For models that include the scaling of the mass-loss rate with initial metallicity, all WR stars become neutron stars rather than black holes at twice the solar metallicity; at lower $Z$, black holes have larger masses. We also show that our models that include the mass-loss metallicity scaling closely reproduce the observed decrease of the relative population of WC over WN stars at low metallicities.

Reference: Accepted A&A, astro-ph/0603188
Status: Manuscript has been accepted