A downward revision to the distance of the 1806-20 cluster and associated magnetar from Gemini near-Infrared spectroscopy

J. L. Bibby(1), P. A. Crowther(1), J. P. Furness(1), J. S. Clark(2)

1: Sheffield; 2: Open University

We present H- and K-band spectroscopy of OB and Wolf-Rayet (WR) members of the Milky Way cluster 1806-20 (G10.0-0.3), to obtain a revised cluster distance of relevance to the 2004 giant flare from the SGR 1806-20 magnetar. From GNIRS spectroscopy obtained with Gemini South, four candidate OB stars are confirmed as late O/early B supergiants, while we support previous mid WN and late WC classifications for two WR stars. Based upon an absolute Ks-band magnitude calibration for B supergiants and WR stars, and near-IR photometry from NIRI at Gemini North plus archival VLT/ISAAC datasets, we obtain a cluster distance modulus of 14.7+/-0.35 mag. The known stellar content of the 1806-20 cluster suggests an age of 3-5 Myr, from which theoretical isochrone fits infer a distance modulus of 14.7+/-0.7 mag. Together, our results favour a distance modulus of 14.7+/-0.4 mag (8.7^+1.8_-1.5 kpc) to the 1806-20 cluster, which is significantly lower than the nominal 15 kpc distance to the magnetar. For our preferred distance, the peak luminosity of the December 2004 giant flare is reduced by a factor of three to 7x10^46 erg/s, such that the contamination of BATSE short gamma ray bursts (GRB's) from giant flares of extragalactic magnetars is reduced to a few percent. We infer a magnetar progenitor mass of ~48^+20_-8 Msun, in close agreement with that obtained recently for the magnetar in Westerlund 1.

Reference: MNRAS Letters
Status: Manuscript has been accepted

Weblink: http://arXiv.org/abs/0802.0815


Email: Paul.Crowther@sheffield.ac.uk