

NSCool User's guide

Structure of the Code

Dany Page

Instituto de Astronomía Universidad Nacional Autónoma de México

The problem to be solved

The equations to be solved are described in the NSCool_Guide_1 Introduction. They are:

- 1) Structure of the star: the TOV equations.
- 2) Thermal evolution of the star.

How to use the TOV solver is described in NSCool_Guide_3_TOV. Meanwhile, several pre-built stars are available in the directory TOV/Profile.

For the thermal evolution equations, the star is cut at an outer boundary, with radius r_b and density ρ_b (typically $\rho_b = 10^{10}$ gm cm⁻³): at $\rho > \rho_b$ matter is strongly degenerate and thus the structure of the star does not change with time:

The star's structure is calculated before the cooling and not modified thereafter. (Almost: NSCool allows for small density changes in the outer part of the star, if required)

Only the energy balance and transport equations are solved as a function of time:

- two first order partial differential equations to get L(r,t) and T(r,t) with
- an initial L and T profile: L(r,t=0) and T(r,t=0)
- two boundary conditions, at r=0 and $r=r_b$.

Note: the heat transport is a diffusion equation and numerically unstable if treated improperly. Numerical stability is achieved using an implicit scheme ("Henyey scheme") similar to the textbook Crank-Nicholson.

Rewriting the thermal evolution equations

The equations to solve:

Unam

Energy balance

$$\frac{d(Le^{2\Phi})}{dr} = -\frac{4\pi r^2 e^{\Phi}}{\sqrt{1 - 2Gm/c^2r}} \left(C_v \frac{dT}{dt} + e^{\Phi}(Q_v - Q_h) \right) \qquad \frac{d(Te^{\Phi})}{dr} = -\frac{1}{\lambda} \cdot \frac{Le^{\Phi}}{4\pi r^2 \sqrt{1 - 2Gm/c^2r}}$$

Use red-shifted functions: $\mathcal{T} \equiv e^{\Phi} \mathcal{T}$ and $\mathcal{L} \equiv e^{2\Phi} \mathcal{L}$

and the Lagrangian coordinate a (baryon number)

 $da = 4\pi r^2 dI n_B = \frac{4\pi r^2 n_B dr}{\sqrt{1 - 2Gm/c^2 r}}$

to get:

$$\frac{d\mathcal{L}}{da} = -\frac{C_v}{n_B}\frac{d\mathcal{T}}{dt} - e^{2\Phi}\frac{Q_v - Q_h}{n_B} \quad \text{or} \quad \frac{d\mathcal{T}}{dt} = -e^{2\Phi}\frac{Q_v - Q_h}{C_v} - \frac{n_B}{C_v}\frac{d\mathcal{L}}{da}$$

and:

$$\frac{d\mathcal{T}}{da} = -\frac{1}{\lambda} \frac{\mathcal{L}}{(4\pi r^2)^2 n_B e^{\Phi}} \quad \text{or} \quad \mathcal{L} = -\lambda \ (4\pi r^2)^2 n_B e^{\Phi} \frac{d\mathcal{T}}{da}$$

which we write as:

$$\frac{d\mathcal{T}}{dt} = F\left(\mathcal{T}, \frac{d\mathcal{L}}{da}\right) \quad \text{and} \quad \mathcal{L} = G\left(\mathcal{T}, \frac{d\mathcal{T}}{da}\right)$$

(the \mathcal{T} dependence of *F* and *G* comes from Q_v , Q_h , C_v , and λ)

Dany Page

Finite differencing the equations

For finite differencing these equations one divides the star into shells, at radii $r_0=0, r_1, ..., r_i, ..., r_{imax}$. *L*, being a flux, is defined at the shell interfaces while T is understood as the average in the interior of each shell: it is common to write then L_i and $T_{i+\frac{1}{2}}$ to emphasize this.

Since fortran does not like loop indices with half integer values I used:

f is defined at *i* = 0, 2, 4, ..., *i*_{max}-1

 \mathcal{T} is defined at *i* = 1, 3, 5, ..., *i*_{max}

$$\frac{d\mathcal{T}}{dt} = F\left(\mathcal{T}, \frac{d\mathcal{L}}{da}\right) \longrightarrow \frac{d\mathcal{T}_{i}}{dt} = F\left(\mathcal{T}_{i}, \frac{d\mathcal{L}}{da}\Big|_{i}\right) \text{ with } \frac{d\mathcal{L}}{da}\Big|_{i} = \frac{\mathcal{L}_{i+1} - \mathcal{L}_{i-1}}{da_{i-1} + da_{i}}$$
for $i = 1, 3, 5, ...$

$$\mathcal{L} = G\left(\mathcal{T}, \frac{d\mathcal{T}}{da}\right) \longrightarrow \mathcal{L}_{i} = G\left(\mathcal{T}|_{i}, \frac{d\mathcal{T}}{da}\Big|_{i}\right) \quad \text{with} \quad \mathcal{T}|_{i} = \frac{\mathcal{T}_{i+1} + \mathcal{T}_{i-1}}{2} \text{ and } \left|\frac{d\mathcal{T}}{da}\Big|_{i} = \frac{\mathcal{T}_{i+1} - \mathcal{T}_{i-1}}{da_{i-1} + da_{i}}$$

for *i* = 2, 4, 6, ...

where da_i is the number of baryons between r_{i-1} and r_i

Dany Page

Wednesday, February 10, 2010

NSCool: User's Guide

Stepping forward in time

Assuming we know the profiles of \mathcal{T} and \mathcal{L} at time t: \mathcal{T}^{old} and \mathcal{L}^{old} we can write for \mathcal{T} and \mathcal{L} at time t'=t+dt:

Explicit scheme

$$\frac{d\mathcal{T}}{dt} = F\left(\mathcal{T}, \frac{d\mathcal{L}}{da}\right) \longrightarrow \mathcal{T} = \mathcal{T}^{\text{old}} + dt \cdot F\left(\mathcal{T}^{\text{old}}, \frac{d\mathcal{L}^{\text{old}}}{da}\right)$$
$$\mathcal{L} = G\left(\mathcal{T}, \frac{d\mathcal{T}}{da}\right) \longrightarrow \mathcal{L} = G\left(\mathcal{T}^{\text{old}}, \frac{d\mathcal{T}^{\text{old}}}{da}\right)$$

this is very easy to integrate BUT:

it is numerically unstable unless dt is very small (Courant dixit)

Better: evaluate *F* and *G* at the new values of \mathcal{T} and \mathcal{L} :

 $\frac{d\mathcal{T}}{dt} = F\left(\mathcal{T}, \frac{d\mathcal{L}}{da}\right) \longrightarrow \mathcal{T} = \mathcal{T}^{\text{old}} + dt \cdot F\left(\mathcal{T}, \frac{d\mathcal{L}}{da}\right)$ $\mathcal{L} = G\left(\mathcal{T}, \frac{d\mathcal{T}}{da}\right) \longrightarrow \mathcal{L} = G\left(\mathcal{T}, \frac{d\mathcal{T}}{da}\right)$

Implicit scheme

> this is numerically stable (and allows large *dt*) BUT: extracting the new \mathcal{T} and \mathcal{L} is tough (particularly \mathcal{T} because it is inside Q_v , Q_h , C_v , and λ)

Dany Page

NSCool: User's Guide

Code Structure

Solving the implicit equations by iterations

Assuming we know the profiles of \mathcal{T} and \mathcal{L} at time t: \mathcal{T}^{old} and \mathcal{L}^{old} we can find the new \mathcal{T} and \mathcal{L} at time t'=t+dt by successive approximations $(\mathcal{T}^{(0)}, \mathcal{L}^{(0)}) \rightarrow (\mathcal{T}^{(1)}, \mathcal{L}^{(1)}) \rightarrow (\mathcal{T}^{(2)}, \mathcal{L}^{(2)}) \rightarrow (\mathcal{T}^{(3)}, \mathcal{L}^{(3)}) \rightarrow \dots$

As an initial guess for $(\mathcal{T}^{(0)}, \mathcal{L}^{(0)})$ one can take $(\mathcal{T}^{(0)}, \mathcal{L}^{(0)}) = (\mathcal{T}^{old}, \mathcal{L}^{old})$ or extrapolate from $(\mathcal{T}^{old}, \mathcal{L}^{old})$ and the previous values $(\mathcal{T}^{older}, \mathcal{L}^{older})$.

Evaluate the functions F and G with $\mathcal{T}_{i}^{(k)}$ and $\mathcal{L}_{i}^{(k)}$ to obtain $\mathcal{T}_{i}^{(k+1)}$ and $\mathcal{L}_{i}^{(k+1)}$:

$$\mathcal{T}_{i}^{(k+1)} = \mathcal{T}_{i}^{\text{old}} + dt \cdot F\left(\mathcal{T}_{i}^{(k)}, \frac{d\mathcal{L}}{da}\Big|_{i}^{(k)}\right) \qquad \mathcal{L}_{i}^{(k+1)} = G\left(\mathcal{T}_{i}^{(k)}, \frac{d\mathcal{T}}{da}\Big|_{i}^{(k)}\right)$$

then plug back $\mathcal{T}_{i}^{(k+1)}$ and $\mathcal{L}_{i}^{(k+1)}$ into F and G to obtain $\mathcal{T}_{i}^{(k+2)}$ and $\mathcal{L}_{i}^{(k+2)}$ and so on until some K when $\mathcal{T}_{i}^{(K+1)} \cong \mathcal{T}_{i}^{(K)}$ and $\mathcal{L}_{i}^{(K+1)} \cong \mathcal{L}_{i}^{(K)}$ (All $\mathcal{T}_{i}^{(K)}$ and $\mathcal{L}_{i}^{(K)}$ are successive approximations *at the same time t'*. \mathcal{T}_{i}^{old} does not change, it is at time t !)

 1^{2} and 2^{1} and 2^{1} are successive approximations at the same time t. 2^{1} does not change, it is at time t.)

As long as the initial guess ($\mathcal{T}^{(0)}$, $\mathcal{L}^{(0)}$) is not too far from the solution the method will converge to the solution (maybe in 10 iterations ?)

Dany Page

NSCool: User's Guide

Improvement: the Henyey scheme

Instead of using brute force iterations, the Henyey scheme use the Newton-Raphson method for solving multi-dimensional equations.

Write the equations as: $\begin{cases} \mathcal{T} - \mathcal{T}^{\text{old}} - dt \cdot F\left(\mathcal{T}, \frac{d\mathcal{L}}{da}\right) = 0\\ \mathcal{L} - G\left(\mathcal{T}, \frac{d\mathcal{T}}{da}\right) = 0 \end{cases}$

or, in N dimensional notation:

$$\Phi(X) = 0 \quad \text{with} \quad X = \begin{pmatrix} \mathcal{L}_0 \\ \mathcal{T}_1 \\ \mathcal{L}_2 \\ \mathcal{T}_3 \\ \vdots \end{pmatrix} \quad \text{and} \quad \Phi(X) = \begin{pmatrix} \Phi_0(X) \\ \Phi_1(X) \\ \Phi_2(X) \\ \Phi_3(X) \\ \vdots \end{pmatrix} \quad f(x_{k+1}) = 0 \quad \leftrightarrow \\ f(x_k) + f'(x_k) \cdot (x_{k+1} - x_k) = 0 \\ \Rightarrow x_{k+1} = x_k - [f'(x_k)]^{-1} \cdot f(x_k)$$

and the Newton-Raphson iteration procedure is: $X^{(k+1)} = X^{(k)} - [D\Phi(X^{(k)})]^{-1} \cdot \Phi(X^{(k)})$ where $[D\Phi(X)]$ is the NxN derivative matrix of $\Phi(X)$ and $[D\Phi(X)]^{-1}$ the inverse matrix.

This involves calculating T derivatives of Q_V , Q_h , C_V , and λ and inverting a large matrix. Fortunately this matrix is tri-diagonal and its inversion is straightforward !

One still have to preform iterations but the convergence can be much faster than brute force.

Dany Page

Wednesday, February 10, 2010

The Newton method

to solve f(x)=0

Checking for iteration convergence and time step control

The Newton-Raphson iterations go as:

 $\begin{aligned} \mathcal{T}_{i}^{(k)} &\to \mathcal{T}_{i}^{(k+1)} = \mathcal{T}_{i}^{(k)} + \delta \mathcal{T}_{i}^{(k)} & \text{[i=1, 3, 5, ...]} \\ \mathcal{L}_{i}^{(k)} &\to \mathcal{L}_{i}^{(k+1)} = \mathcal{L}_{i}^{(k)} + \delta \mathcal{L}_{i}^{(k)} & \text{[i=0, 2, 4, ...]} \end{aligned}$

Convergence will be considered to have been achieved when

$$\operatorname{Max}_{i=1,3,5,\ldots}\left(\frac{\delta \mathcal{T}_{i}^{(k)}}{\mathcal{T}_{i}^{(k)}}\right) < \epsilon_{T} \quad \text{and} \quad \operatorname{Max}_{i=0,2,4,\ldots}\left(\frac{\delta \mathcal{L}_{i}^{(k)}}{\mathcal{L}_{i}^{(k)}}\right) < \epsilon_{L}$$

Values of ε_T and ε_L of the order of 10⁻¹⁰ can be reached in 4 - 6 iterations.

However, if $\mathcal{T}_i^{(0)}$ and/or $\mathcal{L}_i^{(0)}$ are too far away from the solution, iterations go on forever:

the loop is exited, the time step *dt* is shortened and the iteration procedure restarted.

(It is not unusual to see *dt* being cut many times, e.g., when a phase transition (superfluidity/superconductivity) occurs at some point in the star. Sometimes things go real bad (dt → almost zero): "Ctrl-C" is the only solution, and figure out what's happening.)

Time step control: at every new time step *dt* is increased: $dt \rightarrow dt (1+\alpha)$ ($\alpha \sim 0.2$) but:

- if Newton-Raphson converged in << 5 steps a larger α is chosen
- if Newton-Raphson needed > 10 steps to converge a smaller α is chosen
- if \mathcal{T} and/or \mathcal{L} changed too much (from \mathcal{T}^{old} and/or \mathcal{L}^{old}) a smaller α is chosen,

while if they changed ways too much, the time step is recalculated with a smaller dt.

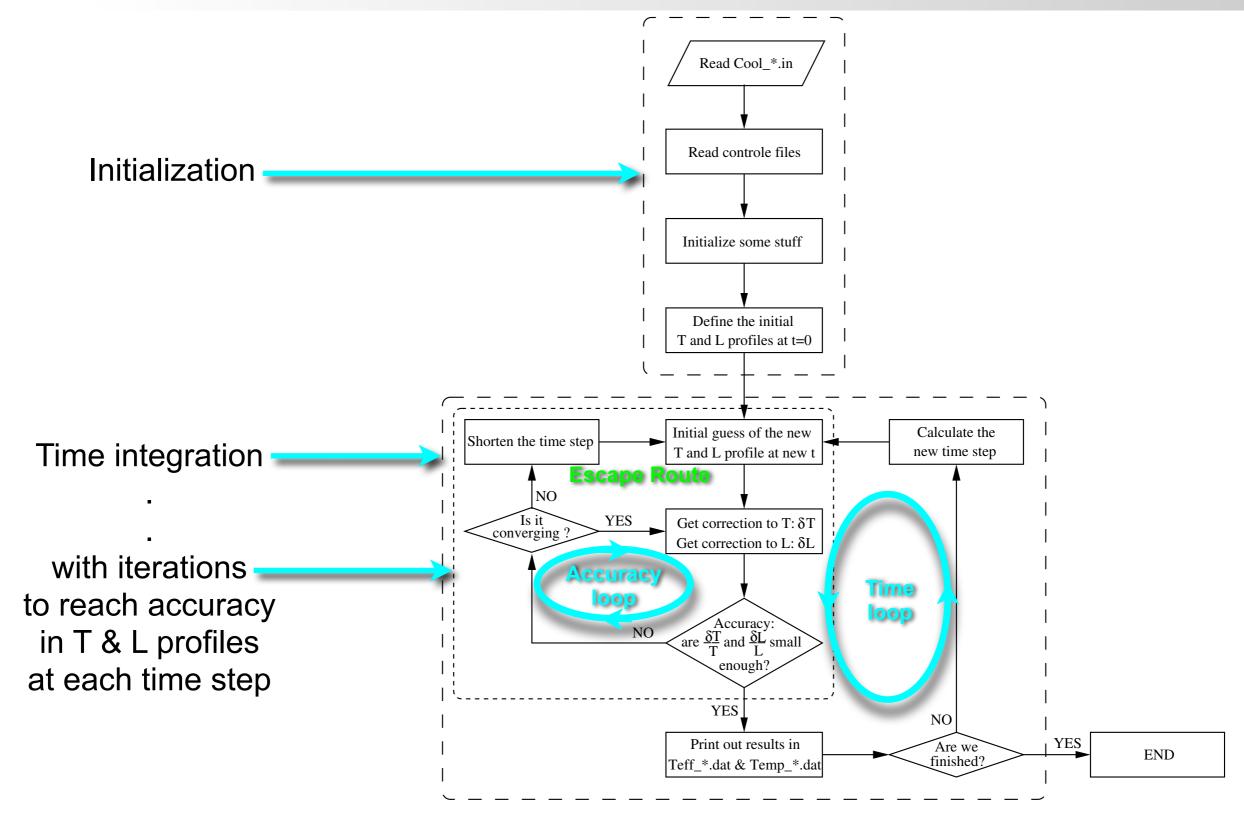
The boundary conditions

Inner boundary condition: L(r=0) = 0 or $\mathcal{L}_{i=0} = 0$

This is easily implemented by initially starting with $\mathcal{L}_{i=0}^{(k=0)} = 0$ and imposing $\delta \mathcal{L}_{i=0}^{(k)} = 0$ at every iteration.

Outer boundary condition (see NSCool_Guide_1_Introduction):

It is (at $r = r_b$): $L(r_b) = 4\pi R^2 \sigma_{SB} [T_e(T_b)]^4$ with $T_b \equiv T(r_b)$

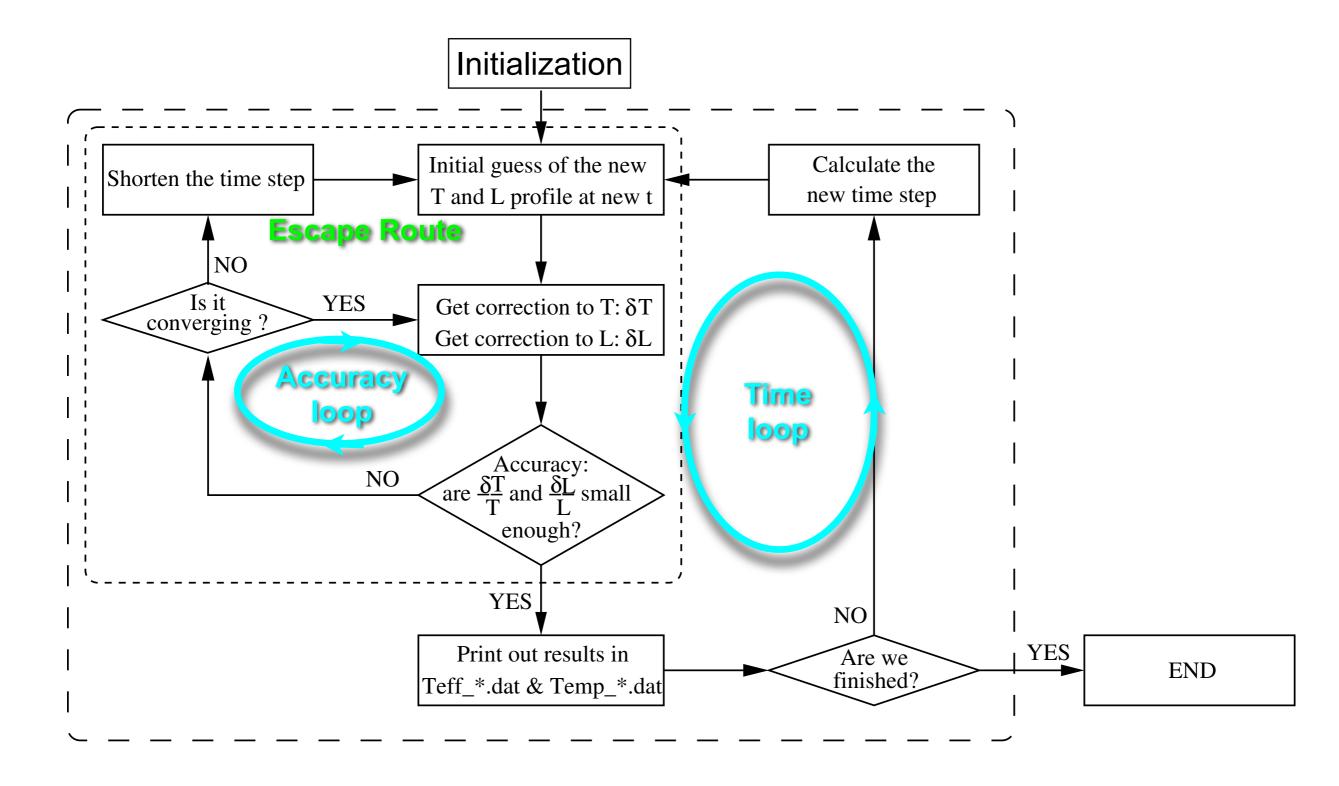

where (in present notations): $L(r_b) = e^{-2\Phi(i_{max}-1)} \mathcal{L}(i_{max}-1)$ and $T(r_b) = e^{-\Phi(i_{max})} \mathcal{T}(i_{max})$ and $T_e(T_b)$ is a function (a "T_e-T_b" relationship) obtained from some envelope model.

This is implemented as part of the inversion of the matrix $[D\Phi(X)]$

Add more details about this !

instituto de astronomía

Flow diagram of NSCool


Notice: NSCool contains an extra "model loop" to run several cooling models from the same Cool_*.in file.

Dany Page

NSCool: User's Guide

Flow diagram of NSCool (bigger)

Dany Page

Code Structure

Reading the NSCool.f file

The next slides describe the structure of NSCool.f :

Implementation of the previous flow diagram

There are many sections of just screen print out (unimportant for now). They are all marked the same way between two line of:

Lines like these would include commands for magnetic field evolutions (not used anymore).

NSCool: User's Guide

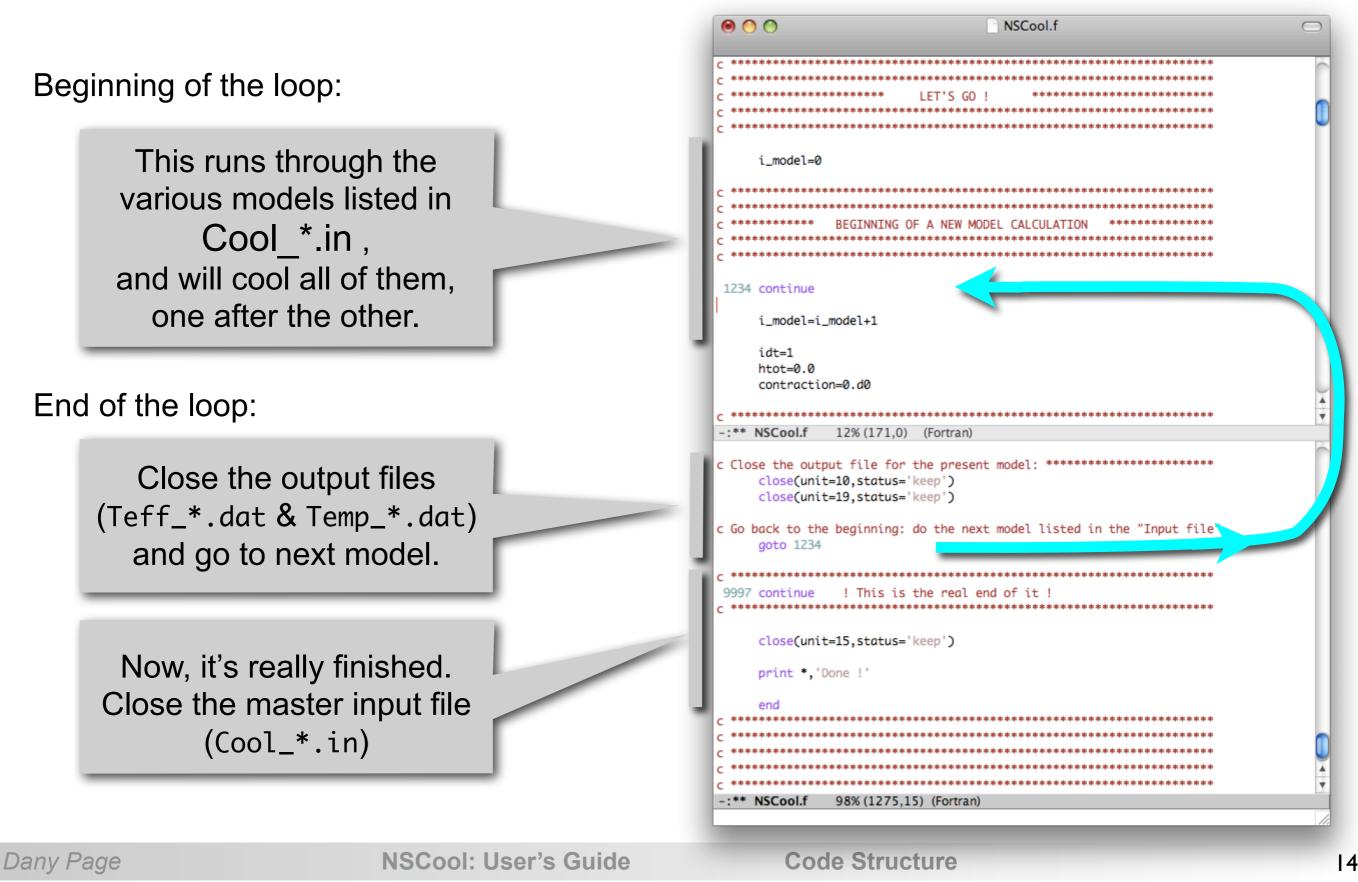
00	NSCool.f	
end if		6
end if	<pre>_rate(time+dtime,dtime,m_dot)</pre>	
	_velocity(m_dot)	
if (pscreen.ge if (pscreen.	.2) then eq.3) read(5,*)	
read(5,*)	cq. 5) + cuu(5, 5)	
<pre>write(6,*)</pre>		
	1a50)	.=
print '(2a10,	li5,1a53)','********','step#=',istep, *********	
±	1050)','*********************************	
1 '*********	******	
	,1p1e10.3),a30,0p1f6.3)' ,	
1	<pre>'time =',(time+dtime)/year,</pre>	
2 3 'dtime	'dtime =',dtime/year, /odtime =',dtime/odtime	<u>o</u> =
print *	volutione - , actile/ vactile	<u> </u>
if (chtemp.eq	.1.) then	
	<pre>0p1f5.2,a9,1p1e9.2,a3,1p1e9.2)',</pre>	
	limited by TEMP change, mdtemp =',mdtemp,	
2 'atrh end if	o=',rrho(icht),'T=',temp(icht)	
if (chstoke.e	q.1.) then	
	<pre>0p1f5.2,a9,1p1e9.2,a3,1p1e9.2)',</pre>	- II - 2 - 2
	<pre>limited by STOKE change, mdstoke =',mdstoke,</pre>	
2 'atrh end if	<pre>0=',rrho(ichs),'S=',stoke(ichs)</pre>	
if (chtrial.e	g.1) then	
print '(a40)	,	
	ime limited by ITRIAL'	
end if end if		
		📗 📛 🛫
		(L) (D)
***** Calculate nt	emp & nlum for first guess ***********************************	*** 🛛 🚄 놀
	.) print *,iGuessing NLum & NTempi	¥ 📜 📒
coeff_int=0.8d		- T T 🕚
** NSCool.f 35%	(490,13) (Fortran)	
0.0		
00	NSCool.f	
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB		
INCLUDE 'Bfield BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	/Bfield_3.inc.f'	
		÷ 🕘 😫
NSCool.f 38% (4	76,22) (Fortran)	
		A manufacture of the second

ode Structure

Wednesday, February 10, 2010

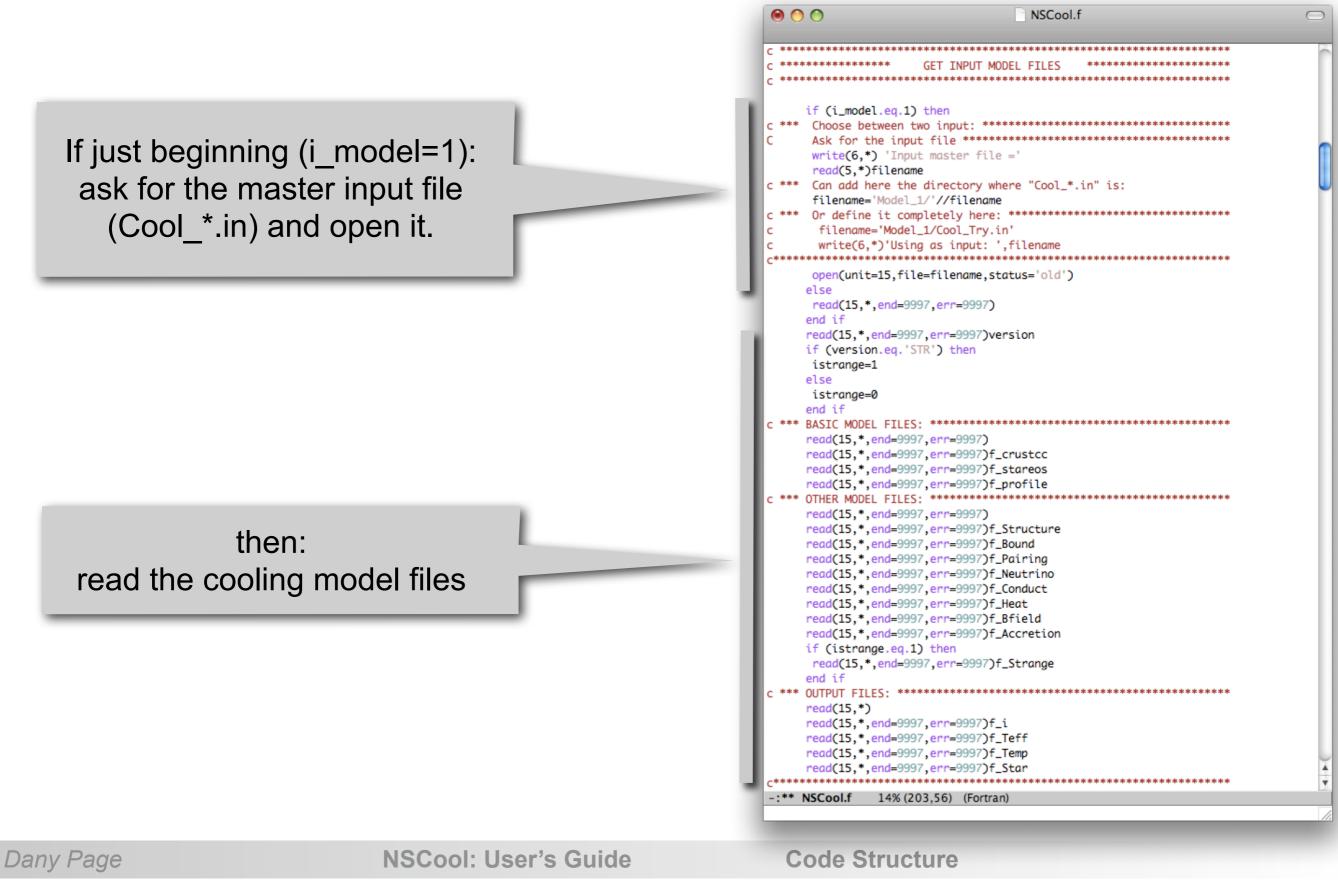
Dany Page

Essential variables in NSCool.f


Code variable		Code variable		The
time dtime temp(i) ntemp(i)	t dt \mathcal{T}_i^{old} $\mathcal{T}_i^{(k)}$	istep itrial	time index iteration index	t but var
dtemp(i) delt(i) lum(i) nlum(i) dlum(i) dell(i)	$d\mathcal{T}_{i}^{(k)}/da$ $\delta\mathcal{T}_{i}^{(k)}$ \mathcal{L}_{i}^{old} $\mathcal{L}_{i}^{(k)}$ $d\mathcal{L}_{i}^{(k)}/da$ $\delta\mathcal{L}_{i}^{(k)}$	Code variable rad(i) rrho(i) debar(i)	r ρ da	

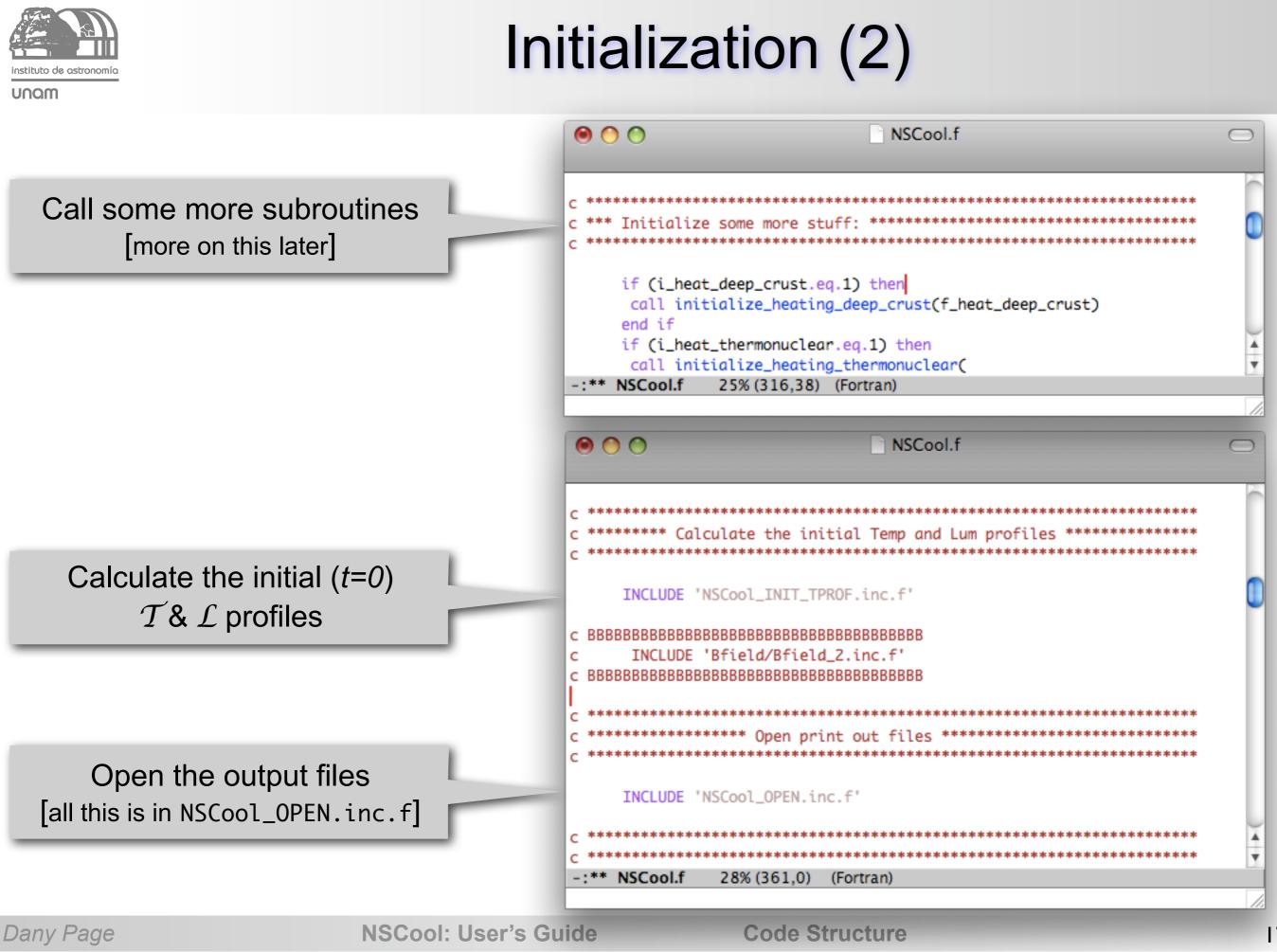
The new time is t'=t+dt but there is no variable for t'

Dany Page



The "model" loop

The "Input File" (Cool_*.in)



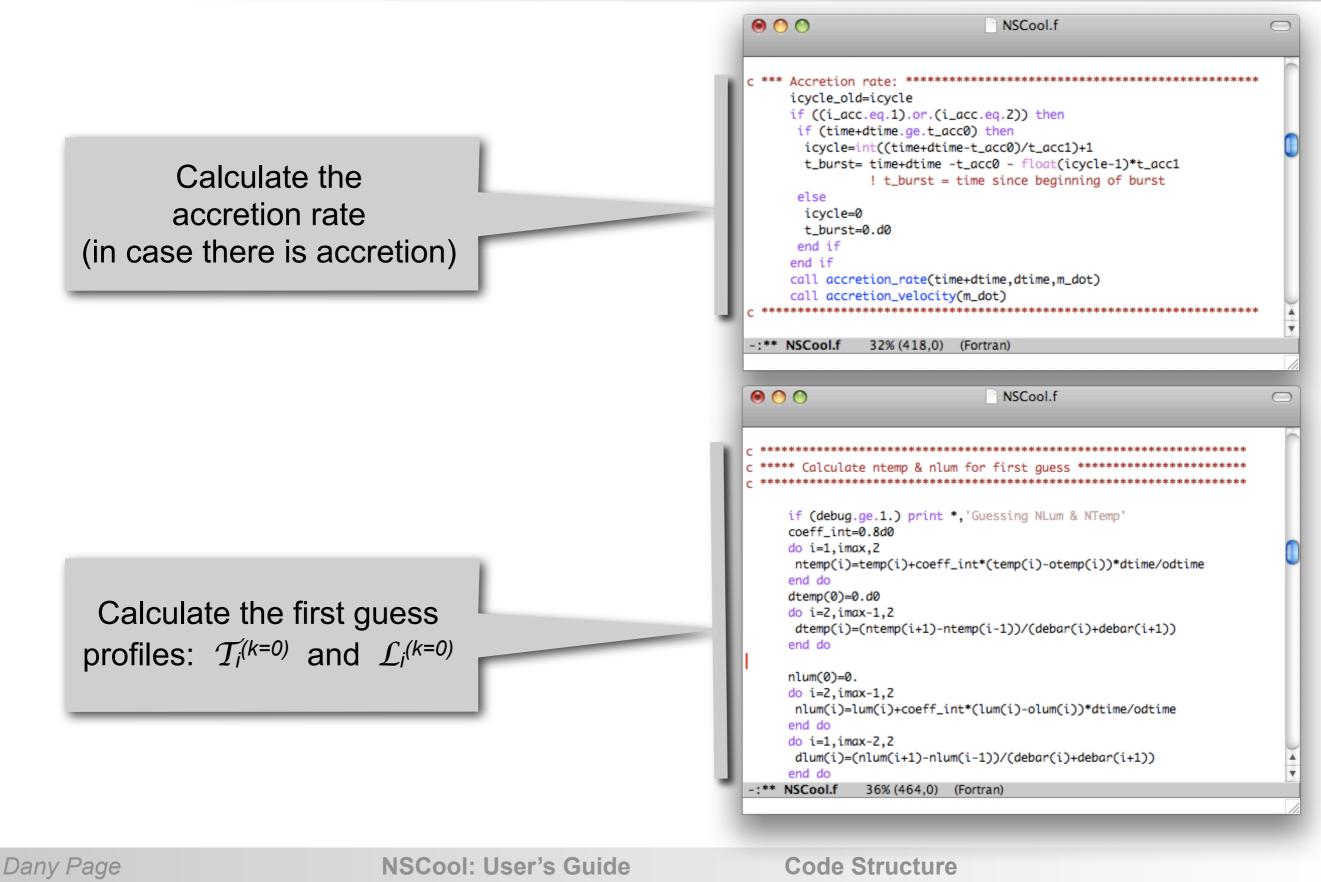
Initialization (1)

	00	NSCool.f	\bigcirc
Open and read the model files (the ones listed in Cool_*.in) [all this is in NSCool_READ.inc.f]	•	<pre>READ THE ABOVE FILES ************************************</pre>	
[more on this later]	*** Get the time i ************************************	ndependent pieces of physics: ************************************	•
	00	NSCool.f	0
physics (as, e.g., the e [¢] 's,)	if (debug.ge.1	<pre>e T-independent coefficients ************************************</pre>	

NSCool: User's Guide

Wednesday, February 10, 2010

17



The "time loop"

Beginning of the loop:	00	NSCool.f	
The time stepping loop (after some little set-up, as resetting the time !)	C ************ C ************ C ********	**************************************	
	c ************** time=tim icycle=0 c **********		
End of the loop:	c **************** c itprint itprint= c **********		

<pre>if (time/year.ge.timemax) goto 9998 if ((sign_l*teffective).lt.tempmin) goto 9998</pre>	-:** NSCool.f	29% (386,0) Fortran)	▼ //.
c ************************************			
c ************************************		It stops when you run	
c Close the output file for the present model: ************************************	*****	out of time steps or you run out of time	
Dany Page NSCool: User's Gui	de	Code Structure	

Prepare for iterations

The Newton-Raphson loop

Reset the iteration loop counter: (this is also a branch point in case of failure)

Beginning of the iteration loop:

Increment the iteration counter

Too many iterations: it is not converging (start again with a smaller time step dt)

End of the iteration loop:

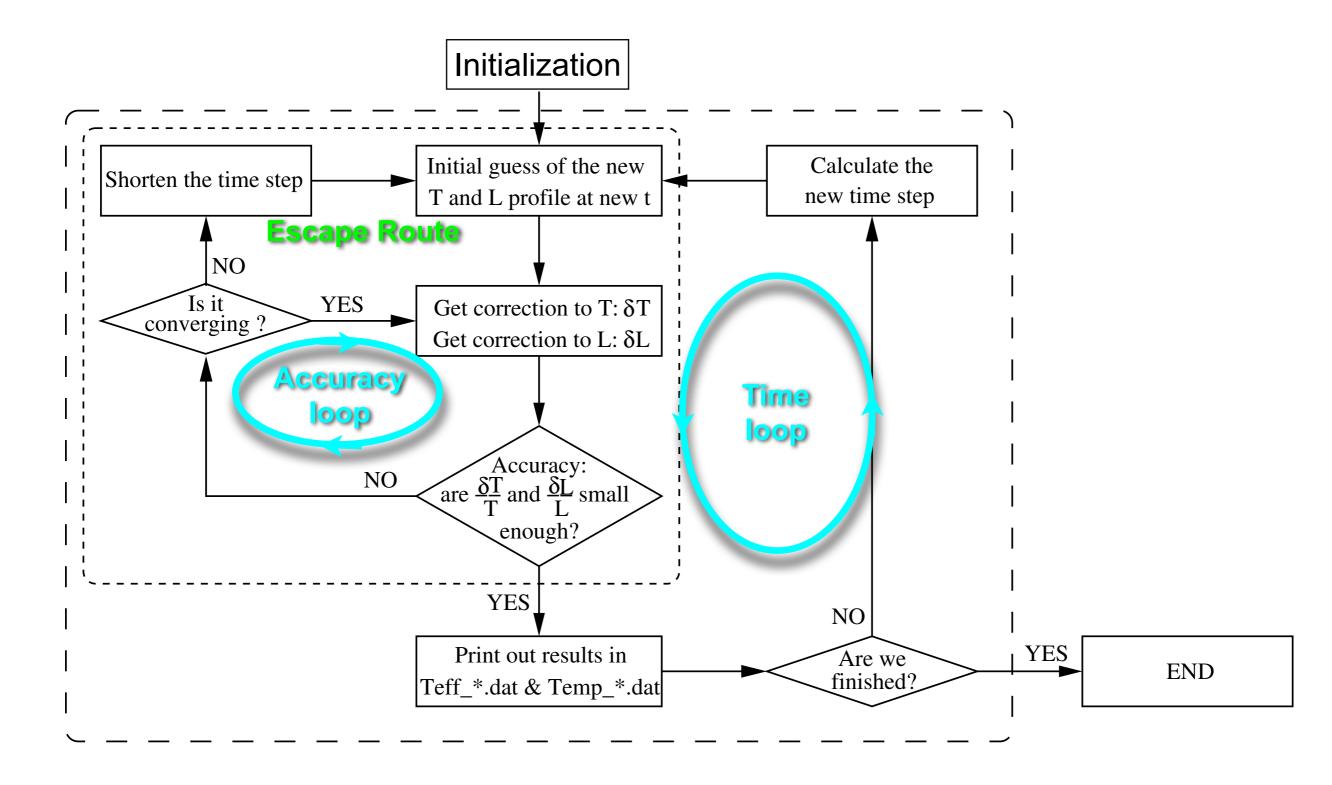
Escape Route:

First Exit

- Converged: go to next time step.
- Not converged: go to next iteration.

0 0 NSCool.f THIS IS THE MAIN TIME LOOP do 9999 istep=1.istepmax debug=0. if (istep.ge.istep_debug) debug=debug_keep if (debug.ge.1.) print *, 'Going: istep=', istep 2345 itrial=0 Branch back here in case: - Too many iteration in Newton-Raphson Envelope boundary condition cannot be solved Temp has changed too much NSCool.f **** Branch here if new trial ****** itrial=itrial+1 ! This is the Newton-Raphson loop if (itrial.eq.itrial_max+1)then tcut=dsqrt(dt0) if (time.le.1.e5) tcut=dsqrt(dt1) dtime=dtime/tcut goto 2345 end if -:** NSCool.f 39% (498,0) (Fortran) ******* Decide if converged or not: if ((ratiot.lt.mratt).and.(ratiol.lt.mratl).and.(ratios.lt.mrats)) x then ! Converged ! continue to next time step continue else ! Not converged ! Go back for another iteration aoto 2000 end if :** NSCool.f 66% (855.0) (Fortran)

Code Structure


NSCool: User's Guide

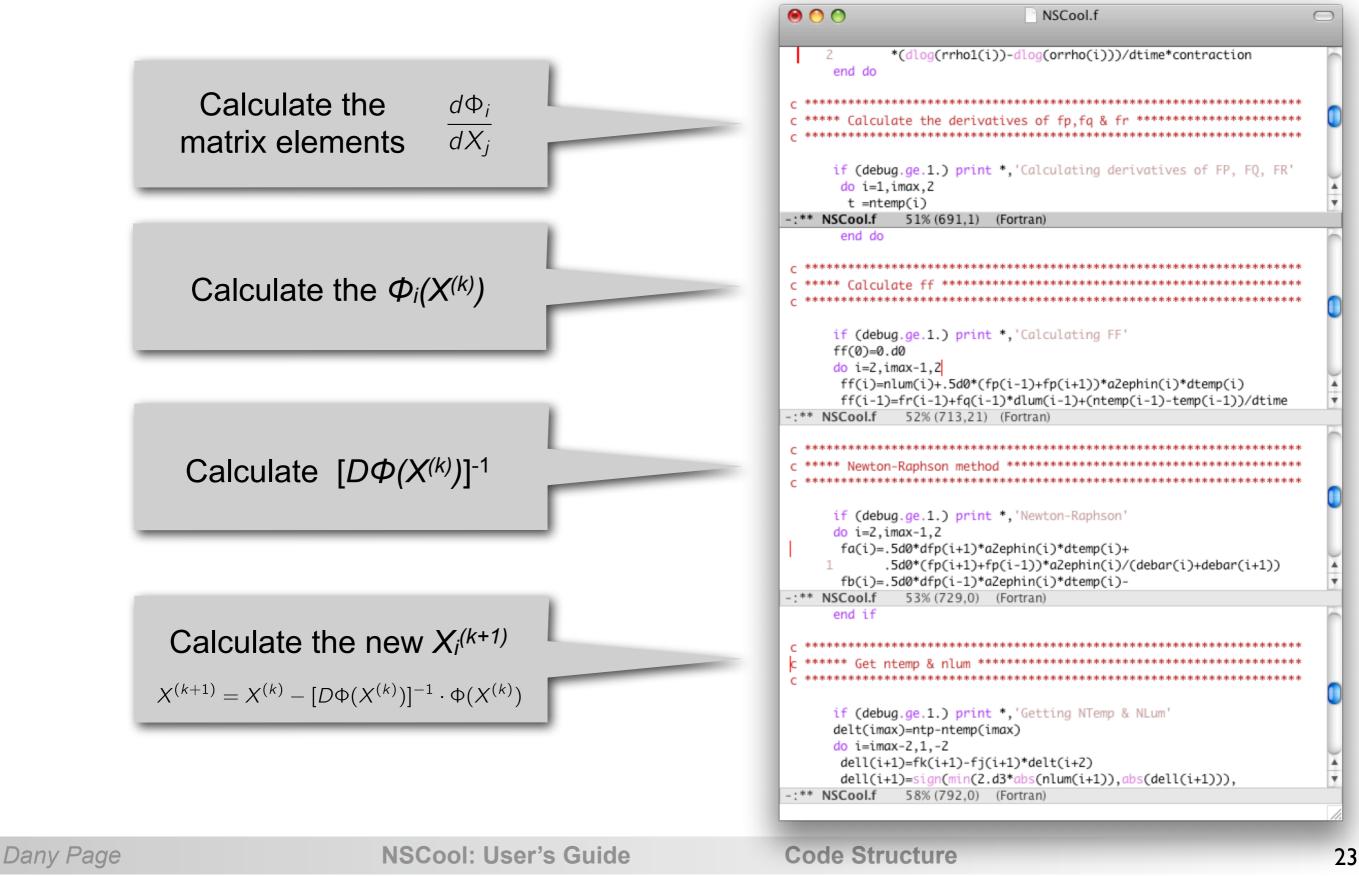
Wednesday, February 10, 2010

20

Flow diagram of NSCool (bigger)

Wednesday, February 10, 2010

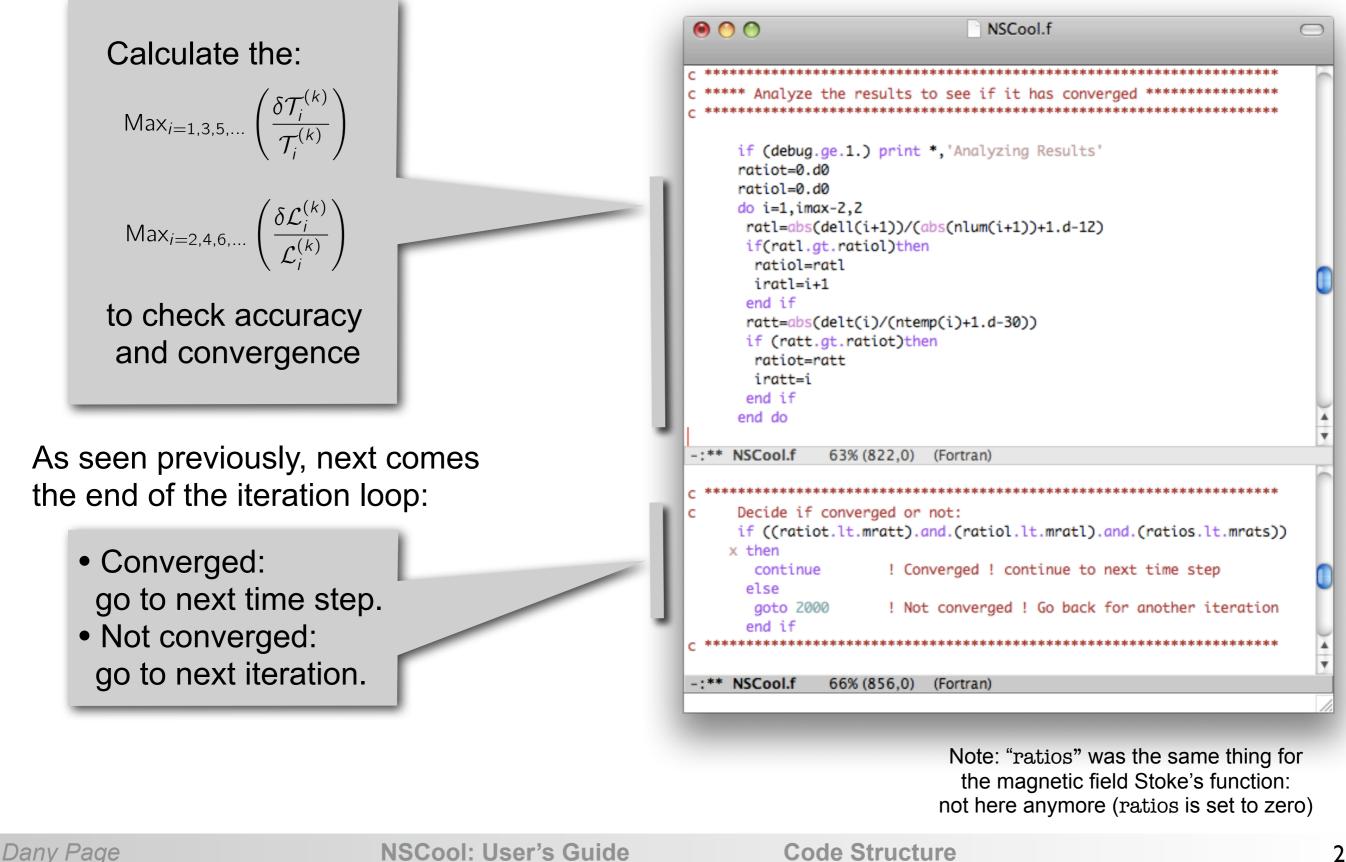
Dany Page



Prepare matrix $[D\Phi(X^{(k)})]$

			00	NSCool.f	\bigcirc
	Adjust density in outer part, if required.			**************************************	0
			do i=imax-1,ie		× •
			-:** NSCool.f 41%	6 (518,0) (Fortran)	6
	Calculates physics			**************************************	
	$(Q_v, Q_h, C_v, \text{ and } \lambda)$ at $T_i^{(k)}$		<pre>do i=1,imax,2 t=ntemp(i)/ep d=rrho(i)</pre>	.) print *,'Calculating physics at NTemp' hi(i)	
T ;(k) i	s changed to $(1-\varepsilon) \cdot T_i^{(k)}$		<pre>a=a_cell(i) a1=a_ion(i) z=z_ion(i) call peutrino</pre>	(i,t,d,a,z,qnu(i),	<u> </u>
	• • • •			6 (544,0) (Fortran)	
	alculate the derivatives			**************************************	
	Readjust density in outer part, if required.		<pre>tinc=max(1.d-1 do i=1,imax,2</pre>	.) print *,'Calculating density at NTemp''' 2,ratiot/1.d1) mp(i)*(1.d0-tinc)	
			do i=imax-1,ie	nv+1,-2 6 (590,0) (Fortran)	Å
	Recalculates physics		c ***** Calculate th	**************************************	
	$(Q_{\nu}, Q_{h}, C_{\nu}, \text{ and } \lambda)$ at $(1-\varepsilon) \cdot T_{i}^{(k)}$		<pre>if (debug.ge.1 do i=1,imax,2 t=ntemp1(i)/e d=rrho1(i)</pre>	.) print *,'Calculating physics at NTemp''' phi(i)	
			•••	6 (623,0) (Fortran)	
		la Quida	Codo Cárra	- chung	
Dany Page	NSCool: User	s Guide	Code Stru	cture	2
Wednesday, Feb	ruary 10, 2010				

Calculate $[D\Phi(X^{(k)})]$, invert it and get $X^{(k+1)}$



The outer boundary condition

This solves the condition $\mathcal{L}(r_b) = 4\pi R^2 \sigma_{SB} [T_e(T_b)$ using Newton's method The function fteff() i	b)] ⁴ with $T_b \equiv T(r_b)$	<pre>if (ifteff.ne.15 epsilon=1.d-8 precision=1.d-1 coeff=4.d0*pi*r lhs=nlum(imax-1 ntp=ntemp(imax) tp0_keep=ntp teff0=fteff(tp0 1 tim 2 deb if(debug.eq50 tp1=(1.d0+epsil teff1=fteff(tp1 1 tim 2 deb if(debug.eq50 derivative=coef derivative=coef derivative=-fj(if(debug.eq50 function=lhs-fj if(debug.eq50 ntp=tp0-functio if(debug.eq50 if(de</pre>	<pre>print *,'Boundary Condition' b) then 2 radius**2*5.67d-5*e2phi(imax)/lsol b)+fk(imax-1)+fj(imax-1)*ntemp(imax) b) /ephi(imax),ifteff,eta,bf_r(imax),istep, ne,ts1,ts2,z_ion(imax),a_ion(imax),rrho(imax), nug) b) print *,'Tb0, Te0 =',tp0,teff0 on)*tp0 //ephi(imax),ifteff,eta,bf_r(imax),istep, ne,ts1,ts2,z_ion(imax),a_ion(imax),rrho(imax), nug) b) print *,'Tb1, Te1 =',tp1,teff1 ff*(teff1**4-teff0**4)/(epsilon*tp0) fimax-1)-derivative (imax-1)-derivative =',derivative (imax-1)*tp0-coeff*teff0**4 b) print *,'Punction =',function m/derivative b) print *,'Del(Tp)/Tp =',abs(tp0-ntp)/tp0 b) print *,'> New Tb =',ntp b.or.(ntp.gt.1.e12)) then ! In case the method diver</pre>		
Dany Page Wednesday, February 10, 2010	NSCool: User's Guide	Code St	ructure	2	24

Check accuracy

NSCool: User's Guide

Getting the new dt

Now that iterations have converged, NSCool analyzes the process and prepares for the next time step.

NSCool tries to increase the time step dt (=dtime variable) as: dtime \rightarrow scale_dt*dtime

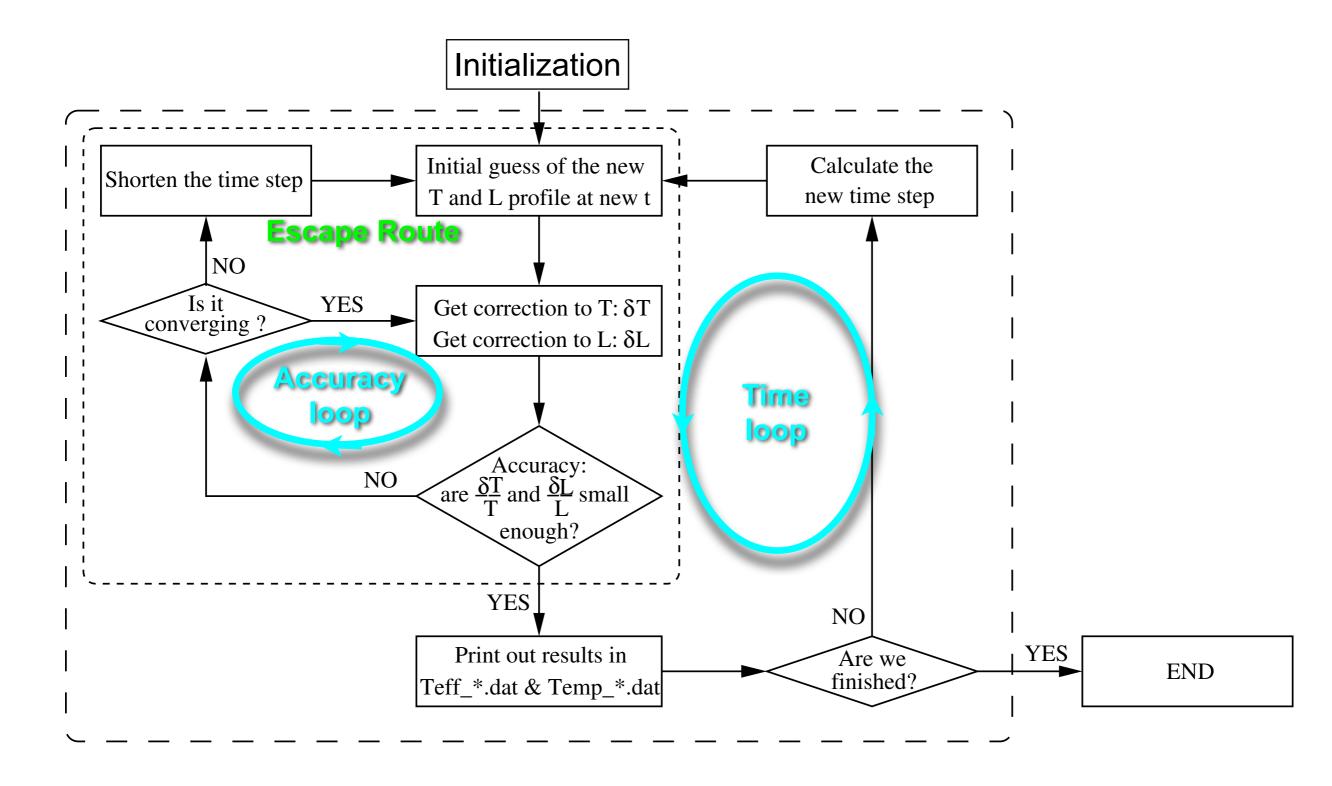
Factors controlling scale_dt:

SCool.f	\Box
c ******** PREPARATION TO CALCULATE THE NEW TIME STEP ************************************	k# 6
C ************************************	k ak
<pre>c This is a delicate part, based on experience and many trials and err c It works pretty well, so avoid changing it ! c</pre>	rors.
c PHILOSOPHY OF TIME STEP CONTROL: c	
<pre>c (Time of step just finished is "time+dtime", not just time !) c The new "dtime" will be "scale_dt*dtime" with "scale_dt" calculated c Allows for 2 different "scale_dt": at early time, while relaxing fro c conditions, accuracy is not important and one can allow for larger t c "scale_dt0" and "scale_dt1" are read from the file</pre>	om initial
<pre>c NUM_PARAM.dat in NSCool_READ.inc.f c and are the maximum allowed relative increase in "dtime"</pre>	▲
C ************************************	**
	1

1) If \mathcal{T}_i differs too much from \mathcal{T}_i^{old} , scale_dt is shortened. This uses

max_dtemp = Max_{i=1,3,5,...}
$$\left(\frac{|\mathcal{T}_i - \mathcal{T}_i^{\text{old}}|}{\mathcal{T}_i^{\text{old}}}\right)$$

2) If the resulting scale_dt is too small, i.e., \mathcal{T}_i differs way too much from $\mathcal{T}_i^{\text{old}}$, the time step is recalculated with a shorted dtime.


3) If finding the solutions required more than the desired number of iterations, scale_dt is also reduced.

Wednesday, February 10, 2010

unam

Flow diagram of NSCool (bigger)

Dany Page

Wednesday, February 10, 2010

NSCool: User's Guide

Up-date $\mathcal{T}\& \mathcal{L}$

Iterations have converged: ntemp(i) and nlum(i) are the solution \mathcal{T}_i and \mathcal{L}_i . They are copied to temp(i) and lum(i) so that they become the $\mathcal{T}_i^{\text{old}}$ and $\mathcal{L}_i^{\text{old}}$ at next time step.

[The variables "osomething" are so defined that, at next time step ,they will refer to two time steps back: they will be used to guess the initial profiles $\mathcal{T}_{i}^{(k=0)}$ and $\mathcal{L}_{i}^{(k=0)}$ by extrapolating.]

The following sections calculate a bunch of things for information purpose.

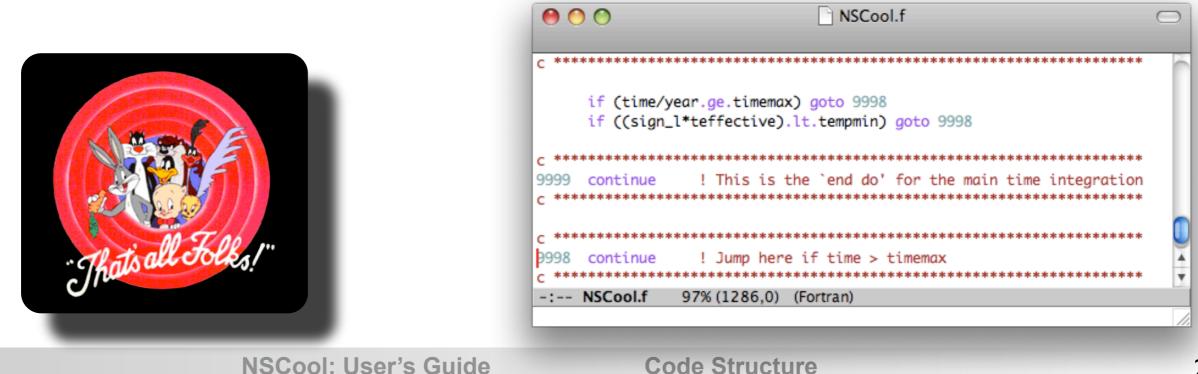
00	NSCool.f	0
C ********	*******	2
c ***** End of iterations		

<pre>do 171 i=1,imax,2 otemp(i)=temp(i) temp(i)=ntemp(i) orrho(i)=rrho(i) orad(i)=rad(i) obar(i)=bar(i) 171 continue</pre>		
<pre>do 172 i=2,imax-1,2 olum(i)=lum(i) lum(i)=nlum(i) orrho(i)=rrho(i) orad(i)=rad(i) obar(i)=bar(i)</pre>	2	
172 continue		1
-:** NSCool.f 74% (963,0)	0) (Fortran)	

● ○ ○ NSCool.f	C
C ++++++++++++++++++++++++++++++++++++	
c ++++++++++++++++++++++++++++++++++++	
c	
c Stuff below, till the next +++++ line is only informative and not	
c used in the calculations.	
-:** NSCool.f 77% (996,0) (Fortran)	
¢ ************************************	
c ***** Calculate the neutrino luminosity and heating: ************************************	
C ************************************	
-:** NSCool.f 79% (1038,0) (Fortran)	
c ***** CALCULATE THE INTEGRATED NEUTRINO LUMINOSITIES: ************************************	
c Note: lnu_tot, calculated from qnu(i), is the garanteed total	
c neutrino luminosity. The other ones are only informative.	
-:** NSCool.f 81% (1057,0) (Fortran)	
c ***** CALCULATE THE INTEGRATED SPECIFIC HEATS: ************************************	
c cv_tot_all, calculated from cv(i), is the garanteed total	
c specific heat. The other ones are only informative.	
-:** NSCool.f 82% (1078,0) (Fortran)	
с +	
k	
· ····································	
C ++++++++++++++++++++++++++++++++++++	
-:** NSCool.f 85% (1117,0) (Fortran)	

Dany Page

NSCool: User's Guide



Print out results in the files
"Teff_*.dat" and "Temp_*.dat"
[all done in file NSCool_PRINT.inc.f]

Update the time variable

SCool.f	\bigcirc
c ************************************	ŕ
C ************************************	0
<pre>INCLUDE 'NSCool_PRINT.inc.f'</pre>	4
-:** NSCool.f 86% (1121,0) (Fortran)	
C ************************************	
<pre>time=time+dtime odtime=dtime dtime=min(scale_dt*dtime,dtlimit)</pre>	
-:** NSCool.f 91% (1197,0) (Fortran)	1
	1

Follow two sections to control dtime in case of accretion: more on this later !

Dany Page