
NSCool User’s guide

Structure of the Code
Dany Page

Instituto de Astronomía
Universidad Nacional Autónoma de México

1
Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

The problem to be solved

2

The equations to be solved are described in the NSCool_Guide_1 Introduction. They are:
 1) Structure of the star: the TOV equations.
 2) Thermal evolution of the star.

How to use the TOV solver is described in NSCool_Guide_3_TOV. Meanwhile, several
pre-built stars are available in the directory TOV/Profile.

For the thermal evolution equations, the star is cut at an outer boundary, with radius rb
and density ρb (typically ρb = 1010 gm cm-3): at ρ > ρb matter is strongly degenerate and
thus the structure of the star does not change with time:

The star’s structure is calculated before the cooling and not modified thereafter.
(Almost: NSCool allows for small density changes in the outer part of the star, if required)

Only the energy balance and transport equations are solved as a function of time:

 - two first order partial differential equations to get L(r,t) and T(r,t) with
 - an initial L and T profile: L(r,t=0) and T(r,t=0)
 - two boundary conditions, at r=0 and r=rb.

Note: the heat transport is a diffusion equation and numerically unstable if treated improperly. Numerical
stability is achieved using an implicit scheme (“Henyey scheme”) similar to the textbook Crank-Nicholson.

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Rewriting the thermal evolution equations

3

Energy balance Energy transport

The equations to solve:

Use red-shifted functions:

and the Lagrangian coordinate a (baryon number)

to get:

and:

which we write as:

(the T dependance of F and G comes from Qν, Qh, Cv, and λ)

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Finite differencing the equations

4

For finite differencing these equations one divides the star into shells, at radii
r0=0, r1, ... , ri , ... rimax. L, being a flux, is defined at the shell interfaces while T is
understood as the average in the interior of each shell: it is common to write then
Li and Ti+½ to emphasize this.

Since fortran does not like loop indices with half integer values I used:

L is defined at i = 0, 2, 4, ... , imax-1

T is defined at i = 1, 3, 5, ... , imax

for i = 1, 3, 5, ...

for i = 2, 4, 6, ...

where dai is the number of baryons between ri-1 and ri

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Stepping forward in time

5

Assuming we know the profiles of T and L at time t: T old and Lold

we can write for T and L at time t’=t+dt:

this is very easy to integrate BUT:
it is numerically unstable unless dt is very small (Courant dixit)

Explicit
scheme

Implicit
scheme

Better: evaluate F and G at the new values of T and L:

this is numerically stable (and allows large dt) BUT:
extracting the new T and L is tough

(particularly T because it is inside Qν, Qh, Cv, and λ)

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Solving the implicit equations by iterations

6

then plug back Ti(k+1) and Li(k+1) into F and G to obtain Ti(k+2) and Li(k+2)

and so on until some K when Ti(K+1) ≅ Ti(K) and Li(K+1) ≅ Li(K)

Assuming we know the profiles of T and L at time t: Told and Lold

we can find the new T and L at time t’=t+dt by successive approximations
(T(O), L(O)) → (T(1), L(1)) → (T(2), L(2)) → (T(3), L(3)) → ...

Evaluate the functions F and G with Ti(k) and Li(k) to obtain Ti(k+1) and Li(k+1):

As long as the initial guess (T(O), L(O)) is not too far from the solution
the method will converge to the solution (maybe in 10 iterations ?)

(All Ti(K) and Li(K) are successive approximations at the same time t’. Tiold does not change, it is at time t !)

As an initial guess for (T(O), L(O)) one can take (T(O), L(O)) = (T old, Lold)
or extrapolate from (T old, Lold) and the previous values (T older, Lolder).

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Improvement: the Henyey scheme

7

Instead of using brute force iterations, the Henyey
scheme use the Newton-Raphson method

for solving multi-dimensional equations.

Write the equations as:

or, in N dimensional notation:

and the Newton-Raphson iteration procedure is:

where is the NxN derivative matrix of and the inverse matrix.

This involves calculating T derivatives of Qν, Qh, Cv, and λ and inverting a large matrix.
Fortunately this matrix is tri-diagonal and its inversion is straightforward !

One still have to preform iterations but the convergence can be much faster than brute force.

x0x1 x2x3

f(x)

The Newton method
to solve f(x)=0

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Checking for iteration convergence
and time step control

8

Convergence will be considered to have been achieved when

Ti(k) ➞ Ti(k+1) = Ti(k) + δTi(k) [i=1, 3, 5, ...]
Li(k) ➞ Li(k+1) = Li(k) + δLi(k) [i=0, 2, 4, ...]

The Newton-Raphson iterations go as:

Values of εT and εL of the order of 10-10 can be reached in 4 - 6 iterations.
However, if Ti(O) and/or Li(O) are too far away from the solution, iterations go on forever:
 the loop is exited, the time step dt is shortened and the iteration procedure restarted.
 (It is not unusual to see dt being cut many times, e.g., when a phase transition (superfluidity/superconductivity) occurs
 at some point in the star. Sometimes things go real bad (dt ➞ almost zero): “Ctrl-C” is the only solution, and figure
 out what’s happening.)

Time step control: at every new time step dt is increased: dt ➞ dt (1+α) (α ~ 0.2) but:
 - if Newton-Raphson converged in << 5 steps a larger α is chosen
 - if Newton-Raphson needed > 10 steps to converge a smaller α is chosen
 - if T and/or L changed too much (from T old and/or Lold) a smaller α is chosen,
 while if they changed ways too much, the time step is recalculated with a smaller dt.

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

The boundary conditions

9

Inner boundary condition: L(r=0) = 0 or Li=0 = 0

 This is easily implemented by initially starting with Li=O(k=O) = O
 and imposing δLi=O(k) = O at every iteration.

Outer boundary condition (see NSCool_Guide_1_Introduction):

 It is (at r = rb):

 where (in present notations): L(rb) = e-2Φ(imax-1) L(imax-1) and T(rb) = e-Φ(imax) T(imax)
 and Te(Tb) is a function (a “Te-Tb” relationship) obtained from some envelope model.

 This is implemented as part of the inversion of the matrix

Add more details about this !

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Accuracy:

enough?

Get correction to T: Tδ

Get correction to L: Lδ

Print out results in

Teff_*.dat & Temp_*.dat

δare −− and −− smallT
T

δL
L

NO

Is it
converging ?

YES

Shorten the time step

NO

finished?
Are we

END

Calculate the

new time step

Initial guess of the new

Read Cool_*.in

Read controle files

Initialize some stuff

Define the initial

T and L profiles at t=0

T and L profile at new t

NO

YES

YES

Flow diagram of NSCool

10

Initialization

Time integration
.
.

with iterations
to reach accuracy
in T & L profiles

at each time step

Time
loop

Accuracy
loop

Escape Route

Notice: NSCool contains an extra “model loop” to run several cooling models from the same Cool_*.in file.

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Accuracy:

enough?

Get correction to T: Tδ

Get correction to L: Lδ

Print out results in

Teff_*.dat & Temp_*.dat

δare −− and −− smallT
T

δL
L

NO

Is it
converging ?

YES

Shorten the time step

NO

finished?
Are we

END

Calculate the

new time step

Initial guess of the new

Read Cool_*.in

Read controle files

Initialize some stuff

Define the initial

T and L profiles at t=0

T and L profile at new t

NO

YES

YES

Flow diagram of NSCool (bigger)

11

Time
loop

Accuracy
loop

Escape Route

Initialization

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Reading the NSCool.f file

12

The next slides describe the structure of
NSCool.f :

implementation of the
previous flow diagram

There are many sections of just screen
print out (unimportant for now).

They are all marked the same way
between two line of:

c ----------------------------------
.
.

c ----------------------------------

Lines like these would include
commands for magnetic field

evolutions (not used anymore).

Lo
ca

tio
n

in
th

e
fil

e
!

Line number !

D
o

no
t t

ru
st

 th
e

lin
e

nu
m

be
r

to
o

m
uc

h:
 a

ny
 s

m
al

l c
ha

ng
e

in
 th

e
co

de
 c

ha
ng

e
th

em
 !

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Essential variables in NSCool.f

13

Code
variable

time
dtime
temp(i)
ntemp(i)
dtemp(i)
delt(i)
lum(i)
nlum(i)
dlum(i)
dell(i)

Code
variable

t
dt
Tiold

Ti(k)

dTi(k)/da
δTi(k)

Liold

Li(k)

dLi(k)/da
δLi(k)

Code
variable

istep
itrial

Code
variable

rad(i)
rrho(i)
debar(i)

Code
variabl
e

r
ρ
da

Code
variabl
e

time index
iteration index

The new time is
t’=t+dt

but there is no
variable for t’

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

The “model” loop

14

Close the output files
(Teff_*.dat & Temp_*.dat)

and go to next model.

Now, it’s really finished.
Close the master input file

(Cool_*.in)

This runs through the
various models listed in

Cool_*.in ,
and will cool all of them,

one after the other.

Beginning of the loop:

End of the loop:

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

The “Input File” (Cool_*.in)

15

If just beginning (i_model=1):
ask for the master input file

(Cool_*.in) and open it.

then:
read the cooling model files

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Initialization (1)

16

Open and read the model files
(the ones listed in Cool_*.in)
[all this is in NSCool_READ.inc.f]

Call a bunch of subroutines
[more on this later]

Calculate some pieces of
physics (as, e.g., the eΦ’s,...)

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Initialization (2)

17

Call some more subroutines
[more on this later]

Calculate the initial (t=0)
T & L profiles

Open the output files
[all this is in NSCool_OPEN.inc.f]

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

The “time loop”

18

The time stepping loop
(after some little set-up,
as resetting the time !)

It stops when you run
out of time steps or
you run out of time

Beginning of the loop:

End of the loop:

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Prepare for iterations

19

Calculate the
accretion rate

(in case there is accretion)

Calculate the first guess
profiles: Ti(k=0) and Li(k=0)

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

The Newton-Raphson loop

20

Reset the iteration
loop counter:
(this is also a branch
point in case of failure)

End of the iteration loop:

Beginning of the iteration loop:

Increment the
iteration counter

Escape Route:
First Exit

Too many iterations:
it is not converging
(start again with a

smaller time step dt)

• Converged:
 go to next time step.
• Not converged:
 go to next iteration.

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Accuracy:

enough?

Get correction to T: Tδ

Get correction to L: Lδ

Print out results in

Teff_*.dat & Temp_*.dat

δare −− and −− smallT
T

δL
L

NO

Is it
converging ?

YES

Shorten the time step

NO

finished?
Are we

END

Calculate the

new time step

Initial guess of the new

Read Cool_*.in

Read controle files

Initialize some stuff

Define the initial

T and L profiles at t=0

T and L profile at new t

NO

YES

YES

Flow diagram of NSCool (bigger)

21

Time
loop

Accuracy
loop

Escape Route

Initialization

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Prepare matrix [DΦ(X(k))]

22

Adjust density in outer
part, if required.

Calculates physics
(Qν, Qh, Cv, and λ) at Ti(k)

Ti(k) is changed to (1-ε)⋅ Ti(k)

to calculate the derivatives

Readjust density in outer
part, if required.

Recalculates physics
(Qν, Qh, Cv, and λ)

 at (1-ε)⋅ Ti(k)

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Calculate [DΦ(X(k))], invert it and get X(k+1)

23

Calculate [DΦ(X(k))]-1

Calculate the Φi(X(k))

Calculate the
matrix elements

Calculate the new Xi(k+1)

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

The outer boundary condition

24

This solves the condition:

using Newton’s method.
The function fteff(...) is Te(Tb).

Escape Route:
Second Exit

Newton fails to find
the solution

(start again with a
smaller time step dt)

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Check accuracy

25

Calculate the:

to check accuracy
 and convergence

As seen previously, next comes
the end of the iteration loop:

• Converged:
 go to next time step.
• Not converged:
 go to next iteration.

Note: “ratios” was the same thing for
the magnetic field Stoke’s function:

not here anymore (ratios is set to zero)

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Getting the new dt

26

max_dtemp ≡

NSCool tries to increase
the time step dt
(=dtime variable) as:
dtime ➞ scale_dt∗dtime

Factors controlling scale_dt:

1) If Ti differs too much from Ti old, scale_dt is shortened. This uses

2) If the resulting scale_dt is too small, i.e.,
 Ti differs way too much from Ti old, the time
 step is recalculated with a shorted dtime.

Escape Route:
3rd & Last Exit

3) If finding the solutions required more than the desired number of iterations,
 scale_dt is also reduced.

Now that iterations have converged,
NSCool analyzes the process
and prepares for the next time step.

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Accuracy:

enough?

Get correction to T: Tδ

Get correction to L: Lδ

Print out results in

Teff_*.dat & Temp_*.dat

δare −− and −− smallT
T

δL
L

NO

Is it
converging ?

YES

Shorten the time step

NO

finished?
Are we

END

Calculate the

new time step

Initial guess of the new

Read Cool_*.in

Read controle files

Initialize some stuff

Define the initial

T and L profiles at t=0

T and L profile at new t

NO

YES

YES

Flow diagram of NSCool (bigger)

27

Time
loop

Accuracy
loop

Escape Route

Initialization

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

Up-date T & L

28

Iterations have converged: ntemp(i) and
nlum(i) are the solution Ti and Li. They are
copied to temp(i) and lum(i) so that they
become the Ti old and Liold at next time step.

[The variables “osomething” are so defined
that, at next time step ,they will refer to two time
steps back: they will be used to guess the initial
profiles Ti (k=0) and Li(k=0) by extrapolating.]

The following sections
calculate a bunch of things
for information purpose.

Wednesday, February 10, 2010

Dany Page NSCool: User’s Guide Code Structure

That’s all Folks !

29

Print out results in the files
“Teff_*.dat” and “Temp_*.dat”
[all done in file NSCool_PRINT.inc.f]

Update the time variable

Follow two sections to control dtime in case of accretion: more on this later !

Wednesday, February 10, 2010

30
Wednesday, February 10, 2010

