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RESUMEN

En este trabajo se describe APL, un lenguaje algoritmico maés extenso, preciso y consistente
en su sintaxis que el lenguaje tradicional de las matemaiticas elementales, con el objetivo
principal de mostrar su aplicacién en Astronomia. Para este fin se eligieron temas de
minimos cuadrados, integracién numérica con abscisas de separacién variable o constante y
solucién de sistemas de ecuaciones diferenciales ordinarias del primer orden. Cada tépico

se ilustré con un ejemplo astronémico.

ABSTRACT

This paper describes APL, an algorithmic language more accurate, rich and consistent
than that of classical elementary mathematics. Examples are given to demonstrate its
versatility in the solving of astronomical problems. We select, for this purpose, topics in
linear least squares, spline numerical quadrature, and solution of systems of ordinary dif-

ferential equations of the first order.

Key words: APL — MATHEMATICAL LANGUAGE — ASTRONOMY.

I. INTRODUCTION

APL is an elegantly simple general purpose
language, more accurate and consistent than that of
classical elementary mathematics (for instance, it
eliminates ambiguities, conflicts and anomalies that
exist in arithmetic and elementary algebra —see
Table 1). It represents a synthesis of mathematics
from a variety of disciplines with a unified notation
to describe many different processes precisely and
concisely. It is, also, very rich in primitive functions
(see appendices).

APL derives its name from the book of its
originator K. E. Iverson: A Programming Language
(Iverson 1962, 1971; Falkoff and Iverson 1968). It
was initially designed for human communication, not
for machines; however, now it can also be used with
computers.

The main purpose of this paper is to introduce
APL to astronomers, specially to those without pro-
gramming experience, since its applications to ma-
chine use require virtually no knowledge of the in-
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ternal functioning of the computer or programming
experience.

Table 1 illustrates, very briefly, some of the above
statements. The columns of this table contain, first,
the name of familiar mathematical functions; second
and third, the APL and the conventional notation
for these functions, respectively; last, a remark on
the traditional language (see also appendices).

In section IT we describe the APL concepts that
lead to linear least squares problems. We also give
in this section a simple example taken from astron-
omy. In section III, we define a function to
integrate numerically, specially when the data given
points are not equally spaced. This technique is also
illustrated with another example taken from
astronomy.

In section IV, a seventh-order Runge-Kutta
function is given to show an application in astronomy.
The conclusions are presented in section V. The
functions and operators of the language are sum-
marized in the appendices.
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TABLE 1
APLL. AND CONVENTIONAL NOTATION

Name of function APL “Traditional Remarks on traditional
Natural logarithm xX log. X argument right to function
Factorial IN N! argument left to function
Magnitude X | X | argument between two marks
Power X %3 X? no symbol for the function
Times X XY XY symbol of the function omitted
Assign variable value A«5 A=5 same ‘=’ symbol used for both,
Relationship statement 2=5-3 2=5-3 { but different purposes.
Summation (sum over) +/V Vv no indication of function to
Times over xX/V v be performed and no extensions
Maximum [/v max {V to other dyadic functions, like
Minus over —/V Vi—=Vadt Va— alternating sum.

II. LINEAR LEAST SQUARES
PROBLEMS

a) Size, Take and Drop functions

The number of elements in a vector V is called
the size of the vector. It is denoted by p.

The monadic function p applied to a matrix
yields a two element vector giving the number of
rows in the matrix followed by the number of
columns. In general, when applied to an array A,
the function p yields a vector whose components are
the dimensions of A.

The dyadic functions, take and drop, are denoted
by T and |, respectively. The take function takes
from its right argument the number of elements
determined by the left argument, beginning at the
front end, if the left argument is positive and at
the back end, if it is negative. The drop function
behaves similarly, dropping the indicated number of
elements from the right argument (see Appendix
E).

b) Inner product

The familiar matrix product of the matrices M
and N is denoted in APL by M + . X N and is
called the “plus times inner” product. In APL, also,
the inner product is extended to all f and to all g
primitive scalar dyadic functions (see Appendix C).

If X and Y are vectors of the same dimension
then the expression Xf . gY is defined as equivalent
to the expression {/XgY (see Table 1 and Appendix
F).
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The inner product is, also, defined on arrays A
and B whose sizes satisfy conditions on conform-
ability. A and B are conformable with the inner pro-
duct Af.gB if at least one of the follwing conditions
is satisfied:

1) A is a scalar

2) B is a scalar

3) 11pA is equal to 1TpB
4) "17 pA is equal to one

5) 17 pB is-equal to one

The above definition of the inner product of two
vectors can be extended to matrices and arrays. If
M and N are two conformable matrices, then their
inner product R <~ Mf . gN is such that the element
R[I;J]is given by the inner product of the vectors
M [I5] and N[;J]

R[I;J] <« M[I;]f.gN[;]] (see Appendix G).

Thus, the inner product of two arrays A and B
of equal rank, whose sizes are vectors of N-elements,
can be defined in terms of arrays whose sizes are
vectors of (N-1)-elements.

" If X is a vector and M is a matrix, then the
inner products, Mf . gX and Xf . gM, are defined by
simply treating X much like a one-column and a
one-row matrix, respectively.

A single element of an array A can be selected
by specifying its indices; the number of indices
required is called the “rank” or “dimensionality” of
the array. Indexing is denoted by brackets. For
example, if M is the matrix


http://adsabs.harvard.edu/abs/1974RMxAA...1...11M

FTI7ARVKAA. —. 71 TV

APL IN ASTRONOMY 13

1 2 3 4
5 6 7 8
9 10 11 12

then M [2;3 ]is 7, the element of the second row and
the third column (the row index appears first).
M[2;]is 56 7 8 (a row index alone selects the
entire vector in that row).
M[;3]is 3 711 (a column index alone selects
the entire column).

c) The Domino function

APL includes a matrnx diviston primitive function
which is denoted by [t]. The dyadic form of [¢]
(domino) 1is used tor solving systems of linear
equations,

The expression Y < B [t]'A produces a Y such
that +/(,B — A+ X Y) * 2 is minimized, where
pA is the vector with elements M and N (M > N),
11pBis M, and
pYis N, 1| pB.

TABLE 2
HYADES PHOTOMETRY

VB PD m A\ B-V O-¢C
1 1942 7.80 7.40 0.57 0.144
6 2338 6.34 5.97 0.34 0.095
8 2391 6.78 6.37 0.42 0.139

13 2511 6.98 6.62 0.42 0.090
14 2520 6.10 5.73 0.36 0.096
16 2550 7.26 7.05 0.42 —0.059
20 2570 6.61 6.32 0.40 0.018
24 2592 5.82 5.65 0.28 —0.106
28 2608 3.98 3.65 0.99 0.037
29 2610 7.17 6.89 0.56 0.020
30 2614 5.72 5.59 0.28 —0.146
32 2619 6.43 6.11 0.37 0.047
33 2621 5.44 5.26 0.22 —0.097
34 2625 6.47 6.17 0.46 0.031
35 2630 7.06 6.80 0.44 —0.008
36 2632 7.19 6.81 0.44 0.112
37 2635 6.94 6.61 0.41 0.059
38 2639 5.90 5.72 0.32 —0.095
41 2648 4.16 3.76 0.99 0.109
44 2649 7.39 7.18 0.45 —0.056
45 2653 5.93 5.64 0.30 0.014
47 2662 5.12 4.80 0.15 0.045
53 2670 6.38 5.97 0.37 0.137
54 2675 . 4.58 4.22 0.13 0.088
55 2676 5.53 5.28 0.25 —0.026
56 2678 4.54 4.28 0.40 —0.011
57 2681 6.74 6.46 0.49 0.014
58 2683 7.85 7.53 0.68 0.075
60 2686 4.52 4.28 0.26 —0.033
62 2687 7.62 7.38 0.54 —0.018
66 2711 7.73 7.51 0.55 —0.037
67 2708 5.98 5.72 0.27 —0.017
68 2716 6.19 5.90 0.32 0.015
70 2718 3.88 3.54 1.01 0.044
71 2720 3.93 3.83 0.95 —0.188
72 2721 3.68 3.39 0.18 0.022
74 2724 5.41 5.03 0.23 0.104
75 2726 6.85 6.59 0.53 —0.004

VB PD m v B-—-V oO-¢C
77 2728 7.16 7.03 0.50 —0.133
78 2730 7.18 6.91 0.45 0.003
80 2741 5.93 5.58 0.32 0.075
82 2745 5.02 4.78 0.17 —0.035
83 2746 5.66 5.48 0.26 —0.097
84 2747 5.66 5.41 0.26 —0.026
85 2748 6.86 6.51 0.43 0.080
89 2761 6.32 6.02 0.34 0.025
90 2767 6.66 6.40 0.41 —0.011
94 2782 6.88 6.62 0.43 —0.009
95 2783 4.89 4.65 0.25 —0.034

100 2809 6.23 6.02 0.38 —0.063

101 2813 6.90 6.65 0.44 —0.019

103 2829 6.13 5.79 0.31 0.064

104 2831 4.66 4.27 0.12 0.118

107 2841 5.64 5.39 0.25 —0.027

108 2840 4.94 4.70 0.14 —0.035

111 2879 5.60 5.40 0.25 —0.077

112 2895 5.64 5.37 0.19 —0.079

113 2900 7.38 7.26 0.56 —0.138

119 2930 7.38 © 711 0.56 0.012

121 2934 7.66 7.29 0.50 0.108

122 2943 6.86 6.77 0.55 —0.171

123 2940 5.32 5.11 0.21 —0.066

124 2950 6.52 6.29 0.50 —0.037

126 2983 6.63 6.37 0.29 —0.017

128 3035 6.98 6.76 0.45 —0.048

129 3060 4.90 4.64 0.16 —0.014

130 3126 5.69 5.43 0.24 —0.017

137 2403 6.20 5.89 0.32 0.035

141 2688 4.80 4.50 0.25 0.026

146 °© 2974 7.48 7.24 0.53 —0.020

154 1756 6.06 5.80 0.41 —0.012

157 1319 5.96 5.79 0.44 —0.101

160 2438 5.80 5.46 0.36 0.066

164 2894 6.22 6.01 1.21 —0.028

168 3414 5.84 5.54 0.22 0.022

169 3695 4.36 4.13 0.16 —0.042

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1974RMxAA...1...11M

FTI7ARVKAA. —. 71 TV

14 EUGENIO E. MENDOZA V.

Thus, Y is the least squares solution of the
system or systems of simultaneous linear equations
B=A+ . XY If A is a non-singular square
matrix, then Y is the solution of a well determined
system of linear equations.

We see from the above that the domino func-
tion is very valuable in astronomy. A common
astronomical problem is to transfer one photometric
system into another. For example, let us transform
the Potsdam visual photometric system into the
standard B, V photoelectric system, taking those
stars, cluster members of the Hyades group (Men-
doza 1967), that have been observed in both photo-
metric systems. Since they are located in a rather
small area of the sky, the transfer equation becomes
(Mendoza and Gdémez 1969) :

m—-—V=a+b(B-V)+s(V-V) +
p(V-V) (B-V),
where

m is Potsdam magnitude
V is Johnson magnitude
B — V is Johnson color

Vis + /V+ p V (V — mean magnitude)

a is the zero point difference between both
systems,

b is the spectral range difference between the
eye and the RCA 1P21 photomultiplier plus
a yellow filter,

s is the Pogson scale deviation, and

p is the Purkinje effect contribution (cf. Men-
doza and Gomez 1969).

To find a, b, s and p, it is only necessary to
apply the above domino function to ‘solve the

equation
X[EM,

where X is the vector of all the m — V and M 1s
the matrix of coefficients a, b, s and p. Thus X [f] M
yields

for a 0.287
for b —-0.036
for s 0010
for p —0.030
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These results indicate that Potsdam photometry
is valuable. It is interesting to mention that this
computation took 0.12 seconds with an IBM
370/155. The relevant data are listed in Table 2.

The columns of Table 2 contain: first, the VB
number (Bueren 1952); second, the PD number
(Miller and Kempf 1907); third, mean PD
magnitude (Miiller and Kempf 1907, column 9 of
Table 1); fourth, V magnitude (Mendoza 1967);
fifth, B — V color (Mendoza 1967); and last, the
observed minus the computed m — V (O — C).

A more useful application would be in photo-
electric reductions.

IIT. A SPLINE QUADRATURE
FORMULA

a) Function definition

It would be impracticable and confusing to at-
tempt to include as primitives in a language all of the
functions which might prove useful in diverse areas
of application. Instead, there should be the pos-
sibility of defining and naming functions.

In APL a function definition begins and ends
with the simbol V (del). Its name must begin with
a letter but may include both letters and digits. It
may have one argument (monadic), two arguments
(dyadic), or zero arguments (niladic).

A defined function may contain both local and
global variables. A variable is, normally, global in
the sense that its name has the same significance,
no matter what function or functions it may be used
in. A variable is local when it has meaning only
during the execution of the function and bears no
relation to any object referred to by the same name
at other times. Any number of variables can be made
local to a function by appending each (preceded by
a semicolon) to the function header.

b) A Spline Function

The name “spline function” comes from the fact
that a third degree spline function behaves similarly
to a mechanical spline (a device used by draughts-
men to draw a smooth curve) which consists of a
flexible steel strip to which weights are attached at
certain points, in order to force a fit to the given
data points.
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Following Greville (1967) we have derived a
mechanical quadrature formula that uses a third
degree spline function. This is given in Table 3a
in terms of a monadic defined function named
SPLINE. Its argument, X, is the matrix of the n
given data points, n-rows and 2-columns (abscissas,
first column; ordinates, second column). In ad-
dition to the primitive functions, SPLINE also uses
three defined functions named DIF, S and SUM,

respectively. They are listed in Table 3b in terms
of primitive functions. ‘

The ninth statement of SPLINE is prefaced by
“ONE:” this name, at the beginning of the execu-
tion, is equal to 9 (the statement number). A
variable specified in this way is called a label.
Another label of SPLINE appears on line 12.

The right-pointing arrows on lines 13, 16, 18,
19, and 20 of SPLINE are called branches. The

TABLE 3a
A SPLINE QUADRATURE FORMULA

VSPLINEX;B;DY;DQY;ETA;G;H;HH;];S2X;W;WW

[11 H < DIF X[;1]
[2] DY <« (DIF X[;2]) ~ H
[8] HH < SUMH .
[4] B< 05X ("1 | H)+HH
[5] D2Y <~ (DIF DY)-+HH
[6] S2X <« 2xD2Y
[77 G< 3xD2y
[8] S2X <« 0,52X,0
[91 ONE:ETA< 0

[10] J&2

[11] W< 4%x2—3%+2

[12] TWO : WW < W X G[J—1]—+/S2X[]}, (B[J—1]1x S2X[]—1]), (0.5—B[J—1]) X S2X[J+1]

[13] — 144+ (| WW)<ETA
[14] ETA < |Ww

[15] S2X[]] < S2X[J]+WW
[16] —> 19—-2X]J# 1+ (p X) [1]

[17] J< J+1
(18] = TWO
[19] —> 20+ETA<EPSILON
[20] — ONE
[21] * ABSCISSAS ORDINATES S'''' (X)
221 S 1
[23] Q (3, ((pX) [11))p X[;1], X[52], S2X
241 S'1
[25] “SPLINE INTEGRAL =";+4/(0.5x HX (SUM X[;2])) — (H%3) X (SUM §2X) +24
v
TABLE 3b
AUXILIARY FUNCTIONS OF SPLINE
V Z<DIF Y VSN V Z<SUM Y
[l Z<(1]ly)-"11Y [1] (’N—l)P' (1] Z<(1]lY)+1]Y
\% v v
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only effect of the expression “—TWO” (line 18)
is to cause statement 12 (with the label TWO) to
be executed next, i.e., the normal order can be
modified by branches.

Labels are used to advantage in branches when
it is expected that a function definition may be
changed for one reason or another, since a label
automatically assumes the new value of the state-
ment number of its associated statement as state-
ments are inserted or deleted.

The SPLINE function listed in Table 3a may
be improved. The way it is presented shows a variety
of uses of APL which may be of interest to the
reader. A great advantage of SPLINE is that the giv-
en data points, X, are not necessarily equally spaced.

The photometric luminosity of a star derived
from the fluxes measured over a range of wave-

lengths is given by

where r is the distance of the star and F (A) is the
flux at wavelength A. In wide-band photometry
the MA’s, the effective wavelengths of the filters, are
not equally spaced. Photometric luminosities may be
easily calculated and duplicated by means of the
SPLINE function. For instance, the observed

r F () dx

.36

for T Tauri (Mendoza 1968), with the aid of
SPLINE is:

SPLINE X
ABSCISSAS  ORDINATES S”(X)
3.60000E71 5.62975E°17 0.00000E0
4.40000E"1 1.85923E716 "6.20774E°15
5.50000E£71 3.11377E°16 "5.56997E°15
7.00000E"1 3.85046E£716 "1.97146E°15
9.00000E"1 4.04649E°16 4.54455E716
1.25000E£0 3.76252E716 6.46857E716
1.60000E0 2.89697E716 3.01159E716
2.20000E0 1.83259E716 1.60565E°16
3.40000E0 1.38193E716 6.75254E°17
5.00000E0 2.30368E°16 0.00000E0
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SPLINE INTEGRAL = 1.02418F15

The above result contains the original X and
the second derivatives of the third degree spline
function. This computation took 0.37 sec (see
above).

IV. A RUNGE-KUTTA FUNCTION

Mendoza and Hacyan (1974) have derived clas-
sical fifth—, sixth—, seventh—, and eighth-order
Runge-Kutta functions with step size control which
hold for systems of n-differential equations. They
have shown that the seventh-order function is the
most suitable for use in APL because it is faster and
more accurate than the other functions.

Below we present Mendoza and Hacyan’s seventh-
order function with minor changes to illustrate further
APL. We, also, present the following astronomical
problem:

Polytropes are very useful in the demonstration
of some of the general concepts of stellar structure.
The so called “Lane-Emden equation” is the basic
equation in the study of polytropes. It can be written
as two differential equations:

dY

—— =7 and

dX

dz 27 M
— = =y

dX X

where n is the polytropic index.

The initial conditions are such that X = 0,
Z=0,and Y= 1. For n=0, 1 and 5 the system
(1) has an analytical solution. For other values of
n we obtain a start from

1
Y, =1 X2 4 Xt e
6 120

This series is valid only for small X. With values
of Y and Z, at a point conveniently reached by the
last equation, we can carry the solution with
the seventh-order Runge-Kutta function (RK78P).

Table 4a contains the dyadic function RK78P.
Its left argument indicates the number of differential
equations. The right argument is a vector of size
N + 5. The components of this vector give:
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TABLE 4a
A SEVENTH-ORDER RUNGE-KUTTA FUNCTION

V N RK78P Y;AC;CRP;EFE;;ERR:H ;HH I;];P;XX;YRES

[11 J<1
(2] Z < ((14+(Y[N+2]-Y[1]) +Y[N+3]),N+1)p0
3] AC<0
[4] EFE < (13,N) 00
5] XX <« Y[1i]
[6] H< Y[N + 3] x 0.1
[7] FIVE: CRP <0
[8] —> ONE IF Y[1]% XX
[9] Z[J;] < YIN+1]
[10] J<J+1
[11] XX < XX+ Y[N+3]
[12] — TWO IF Y[1]>Y[N+2]
[13] ONE:P< |P+Y[N+3]X0=P < XX—Y[l]4+H
[14] SIX : EFE[1;] < Y[N+5] DER(N+1)pY
[15] I<2
[16] THREE : EFE[I;] < Y[N+5] DER((Np 1Y)+ (((I—1)pBETA[(d—1) +
0.5% (I—2) XI—11) + . X EFE[I—1;]X H), Y[1]+ALPHA[I—1]x H
[17] — THREEIF 13>T<I+1
[18] YRES < (Npl|Y)+HXGAMMA+ . X EFE[1,546;]
[19] ERR < (41+840) X [ /| EFE[1;]+EFE[11;]—EFE[12;]+ EFE[13;]
[20] HH< H
[21] H< L/P,HHX (Y[N+4]+ (ERRX10)+1E7XY[N+4]) % +7
[22] —> FOUR IF ERR>Y[N+4]
[23] Y[N+1]< Y[l], YRES+HH
[24] AC < AC+ERRXHH
[25] — FIVE
[26] FOUR : —> SIX IF 2> CRP < CRP+1
[27] TWO : 81
[28] Z[;3] <= —Z[;3]
[29] z
\Y

TABLE 4b
AUXILIARY FUNCTIONS OF RK78P

V COEFF

[1] ALPHA < (2+27), (+9), (+6), (5+12),0.5, (5+6), (+6), (2+3), (+3), 1 0 1

[2] BETA < (2+27), (+36), (+12), (+24),0, (=8),
(5+12), 0, (25+16), (25+16), (<20), 0 0, 0.25 0.2, (25+108), 0 0

[8] BETA < BETA, (125-108), (765+27), (125+54), (31+300), 0 0 0, (61=225),
(2+9), (13+900), 2 0 0, (53+6), (704=-45)

[4] BETA < BETA, ("107+9), (67+90),3, (91+108), 0 0, (23-108), (1976-135),
(311+54), ("19+60), (17+6), (—+12)

[5] BETA < BETA, (2383+4100), 0 0, ("341+164), (4496+1025), ("301-+82),
(2133+4100), (45+82), (45+164), (18+41), (3+205)

[6] BETA< BETA, 00 00, (6+41), (3+205), (3+41), (3+41), (6+41), 0
(C1777+4100), 0 0, ("341-+-164), (4496 +1025)

[7] BETA < BETA, ("289+82), (2193--4100), (51+82), (33+-164), (12+41), 0 1

[8] GAMMA < (41+840), (34=105), (9+35), (9+35), (9 280), (9-+-280), (41-+840)

>

v

VZ< NDERY VZ< AIFB
(1_Z <« ((2XY[1]+Y[3]) —Y[2]*N), Y[1] 1] Z<B/4

v v
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1, N The initial values of the dependent TABLE 4c
variables. LANE-EMDEN FUNCTION
N+ 1  The initial value of the independent )
variable. (Polytrope n = 1.5)
N +2  The last value of the independent -
variable, X Y Y
N +3  Step size for printing the new N 4 1 0 1 0
elements of Y. 0.1 0.99833458 0.033283375
N +4  Tolerance 0.2 0.99335329 0.066267997
L. 0.3 0.98510075 0.098660069
N+ 5  Polytropic index 0.4 0.97365051 0.13017558
Table 4b shows the defined functions used by 82 882?;%?2 813%‘;‘;33
RK78P, ,D,ER and IF. In addltion, Table 4b lists 0.7 09212547 021686297
the coefficients of the seventh-order Runge-Kutta 0.8 0.89827654 0.2423798
function as a niladic function (COEFF). Again, 0.9 0.87284558 0.26589233
the listed functions may be improved. However, they 1 0.84516976 0.28725554
are given primarily to show a variety of uses of 1.1 0.81546995 0.30635568
APL 1.2 0.78397682 0.32311089
. 1.3 0.75092764 0.33747108
Table 4c shows the results from O to 3.6 of the 1.4 0.7165631 0.34941725
Lane-Emden function for the case n = 1.5, which 1.5 0.68112433 0.35896018
are accurate at least to the seventh place (Wrubel 1.6 0.64484991 0.36613866
1958). This computation took 27 seconds (see 1.7 0.60797328 0.37101729
bove) 1.8 0.57072021 0.37368393
above). 1.9 0.53330663 0.37424694
V. CONCLUSION 2 0.49593676 0.37283214
_ o 2.1 0.45880147 0.36957988
We have presented a partial description of APL 2.9 0.42207699 0.36464189
to show two main characteristics, namely, its virtues 2.3 0.38592395 0.35817841
as a mathematical language and its versatility in the 2.4 0.35048663 0-35035528
solving of astronomical problems. 2.5 0.31589258 0.34134136
. - . : 2.6 0.2822524 0.33130609
F?r the sake of .s1mp11c1ty and briefness, we did 9.7 0.94965981 0.32041742
not give more complicated examples. Needless to say, 2.8 0.21819187 0.30884
APL will handle them with no problem. 2.9 0.18790943 0.29673374
It is interesting to point out that programming 3 0.15885761 0.28425273
time and execution time are as a rule shorter, in 3.1 0.13106644 0.27154467
: . 3.2 0.10455153 0.25875075
{%PL than other major computer languages, see for 3.3 0.079314641 0.94600631
instance, Kolsky (1969). 3.4 0.055344243 0.23344261
We are grateful to the IBM Latin American 3.5 0.032615729 0.22119086
3.6 0.011090995 0.20939266

Scientific Center for providing computing facilities.
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APPENDIX A
PUNCTUATION MARKS

Symbol Description Example

The same as in arithmetic. 2.71828
Catenates some functions to define new operators. inner product
Used only as a part of a constant to represent negative numbers, immediately 2

preceding the number.

E An integer, following the “E” specifies the power of ten by which the part 2.718E2 is 271.8
preceding the E is to be multiplied.

An enclosed expression in “‘quotes” defines a character expression. The quotes ‘APL\360" is

do not form part of the expression. APL\ 360
() An enclosed expression in “parentheses” must be completely evaluated (2 4+ 3) X 4 is 20
before its results can be used. (243X 4) is 14
[ 1 To the right of a variable, for indexing. M[2;]is 8 6 4 2
[ 1] To the left of a variable, for indicating under which dimension is the execution +/[1] M is 99 9 9
(see also Appendix E).
[ ] In defined functions “brackets’” are statement numbers. See text
5 In brackets for separating indices. M[2;3] is 4
; To define local variables in defined functions. See text
5 Catenates a variable with an expression. '‘SUMIS’ ;4 /b
gives SUM 1S 15
For labeling statements in defined functions. See text
Letters “underlined” are composite letters. ) o 4 P L
a— The “lamp” symbol signifies what follows it is a comment, for illuminatior  See Falkoff and Iverson (1968)

only and not to be executed.

APPENDIX B
PRIMITIVE SCALAR MONADIC FUNCTIONS
Function  Name Definition Example Result
+ Plus + X< >0+ X + 4 _4-
— Negation — X< 2>0-X —4 4
X Signum 1 for X >0 X 4 1
0 for X =0 x 0 0

1 for x <0 X 4 "1
== Reciprocal X o>1+X =4 0.25
[ Ceiling Smallest integer not exceeded by X [ 4.13 5
L Floor Largest integer not exceeding X L 4.13 4
* Exponential * X ¢ —> (2.718281828...) ¥ X o . - * 4 54.59815. ..
® Natural & X < —> (2.718281828...) ®X ®4 1.38629...

Logarithm

| Magnitude [ X X xxX | 4 4
! Factorial Gamma and factorial functions of the arithmetic 14 24
? Roll ? N ¢= = random selection among (N 24 2
~ Complement 1 for X =0 ~0 1

0 for X =1 ~1 0
O Pi times OX <« — (3.14159...) x X O4 12.56637. ..
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APPENDIX C
PRIMITIVE SCALAR DYADIC FUNCTIONS

Function Name Defintion Example Result
+ Addition Same as in arithmetic 24+ 4 6
- Substraction Same as in arithmetic 2—4 2
X Multiplication Same as in arithmetic 2X 4 8
+ Division Same as in arithmetic 2+ 4 0.5

Maximum X ['Y ¢« — largest between X and Y 2T 4 4
[ Minimum X LY <= — smallest between X and Y 2 [4 2
* Power Same as in arithmetic 2% 4 16
® Logarithm X@®Y < —>log Y base X 2® 4 2
| Residue X|Ye<>Y— (X)X LY+ |XforX£0 2|4 0
X| Y >Y forX=0, Y>0 0] 4
X |Y <= = not defined for X = 0,Y < 0 0|74 Domain error
! Binomial
coefficient XY = (1Y) - (!IX)X!'Y-=-X 214 6
= Equal Same as in arithmetic 2=4 0
* Not equal Same as in arithmetic 254 1
> Greater Same as in arithmetic 2>4 0
> Not less Same as in arithmetic 2> 4 0
< Less Same as in arithmetic 2<4 1
< Not greater Same as in arithmetic 2<4 1
(see Table 1).
Logical functions Table
Function Name X Y XAY XVY XKAY XY
A And 0 0 0 0 1 1
V Or 0 1 0 1 1 0
~ Nand 1 0 0 1 1 0
X Nor 1 1 1 1 0 0

Circular functions Table
(=X)0Y X X0Y
(1 —-Y%2)%0.5 0 (1—Y%2) %05
Arcsin Y 1 Sine Y
Arccos Y 2 Cosine Y
Arctan Y 3 Tangent Y
(1 4+Y%2) %05 4 (1 4+Y%2) %05
Arcsinh Y 5 Sinh Y
Arccosh Y 6 Cosh Y
Arctanh Y 7 Tanh Y
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APPENDIX D
PRIMITIVE MIXED MONADIC FUNCTIONS
Function Name Definition Example Result
I Size o X ¢« —> dimension of X oM 2 4
s Ravel , X = (X /pX)pX s M 13578642
. Index t N ¢~ — first N integers 4 1234
generator
A Grade up The permutation which orders X A 3524 3142
ascendingly
7 Grade down The permutations which order X v3524 2413
descendingly
q) Row reversal X ¢« —> X is reflected on last (p M 7531
coordinate 2468
e Column 6 X ¢~ —> Xisreflected on first e M 8642
reversal coordinate 1357
Q Transposition Q X €= —>is transposed on last two Q M 18
coordinates 36
“ 5 4
72
B Matrix inverse X<« = Itissuchthat X + . x EHX [H22p1357 0875 0.375
is the identity 0.625 70.125
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APPENDIX E
PRIMITIVE MIXED DYADIC FUNCTIONS

Function Name Definition Example Result
o Reshape XpY ¢ — “reshapes” Y to dimension ‘X 24p.8 1 2 3 4
5 6 7 8
R Joins two variables along the last P,Q 10 8 6 1 3 5
catenatlon }coordinate 4 2 0 7 11 13
,[1] Column Joins two variables ‘along the first P,[1]1Q 10 8 6
catenation | coordinate 4 2 0
1 3 5
7 11 13
,[R]  Lamination Joins two variables along a new P,[1.5]Q 10 8 6
coordinate 1 3 5
4 2 0
7 11 13
t Index of XY < — Least “index of” X in Y,or 11pY 2357 .52 3 1
1 Take See text 21730 7 3
d Drop See text 21730 0
/ Row X/Y <~ — “compressed” on last coordinate 0 101/M 3 7
compression (X, logical vector) 6 2
# Column X +Y ¢ — “compressed” on first coordinate 0 1 + M 8 6 4 2
compression} (X, logical vector)
N Row X NY ¢« = “expanded” on last coordinate 11011\XM 1 3 0 5 7
expansion } 8 6 0 4 2
A Column }X 4+ Y« — “expanded” on first coordinate 101 4+M 1 3 5 7
expansion 0 0 o0 O
) 8 6 4 2
(D Row rotation X (DY < —> “rotated” on last coordinate 21 @ P 6 10 8
2 0 4
) Column X O Y « — “rotated” on first coordinate 16 P 4 2 0
rotation } 10 8 6
® Transposition X () Y <= —> coordinate I of Y becomes 21 0P 10 4
coordinate Y [I] of result. 8 2
6 0
€ Membership  pX €Y < — pX 7352€24 0 0 0 1
1 Decode X 1LY <« — Y is transformed to base X 10 1 3142 3142
1 Encode XTY ¢ —Y is represented in system X 24 60 60 T 3142 0 52 22
? Deal X ?Y ¢ —> random ‘“deal” of X elements 37210 9 2 5
for Y
(5. Domino See text (®P)F ®Q 73671 T2.214
1.833 0.833
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APPENDIX F
PRIMITIVE OPERATORS
Operator Name Definition Example Result
f/  Row £/X = (X[1; ... 16X 1.0 2. X [1; ... pX [ppX]), +/M 16 20
reduction

X[pX [1]; ..

reduction

f# Colum fAX = (X[1;...; 116X [2;5.. 510 f ... £X [pX [ppX]; - . .5 1),
} (X[1; ... 20 £X[2; ... 5 21f ... £X [pX [ppX]; .. .5 2),

G X X[ .. 2] £X [pX (1] .

(X[2; .. 116X [2; .. .52 ... £X[2; ... pX [ppX]),

-5 0X [ppX]

+#M 9999

X[1; .o pXTUEX[2; .03 oX [ L E X [ppX]; o005 pX [1]
o.f  Outer X, . fY ¢ —> yields an array of dimension (pX), pY, formed by 2 40.47 5 3 151) ; 3
product } applying f to every pair of components of X and Y .
f.g Inner See text P+.Xx QQ 64 236
product 10 50
APPENDIX G
SPECIAL FUNCTIONS
Function Name Description Example
<~ Assignment A variable to the left of the arrow receives the X« 10
value specified by the expression to the right
of the arrow (see Table 1).
- Branch See text .
O Quad [ ¢ X ¢~ —> prints and storages X O«2x71is 14
X =[] <= —> accepts any valid numerical 3xO+2
expression as keyboard input. :
7 (input)
(27 is the result)
M Quote quad X = [T] €= —> accepts any valid character NAME « [M]

expression as keyboard input.

In the appendices

M
1357 1

0
8642 4

and R, non integer such that

“is defined as”.
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