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RESUMEN

En este articulo se presenta una variante de los métodos estandar de reduccién de medidas fotomsé-
tricas fotograficas. Se combinan el ajuste minimo cuadritico, rapido y compacto, mediante polinomios
ortogonales y el analisis de varianza, para obtener curvas de calibracién libres de efectos de magnitud
y color. Se incluye, asimismo, un ejemplo de aplicacién a cuatro placas R (Sistema RGU de Becker)

del cimulo abierto IC 2581.

ABSTRACT

In this paper we present a variant of the standard methods in photographic photometry data
reduction. The compact and fast least squares fitting with orthogonal polynomials has been combined
with the analysis of variance, in order to obtain calibration curves corrected for magnitude and color
effects. An example of application to four R plates (Becker’s RGU system) is also included.
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I. INTRODUCTION

The problem of data reduction in photographic
photometry is old, and various techniques have been
proposed in the past. The procedure we describe here,
which has already been tested, shows some advantages
which can improve the quality of the results, concerning
specially the statistical treatment of data.

The first point to consider in reducing photographic
measurements when a photoelectric sequence is available
in the field under study, as in our case, is the derivation
of calibration curves. These curves relate photometer
readings (iris readings in our case) and magnitudes of
the stars of the photoelectric sequence. The next step
consists in analyzing the residuals of the previous cali-
bration to test magnitude and color effects, in order to
correct them if they are significant. In what follows
we will discuss both topics.

II. DESCRIPTION OF THE METHOD

a) Calibration Curves

The relation between iris readings and magnitudes
is obtained either graphically or by léast squares numer-
ical methods. The latter procedure is used most fre-
quently given its greater accuracy and the easy access
to fast and precise computation tools (Burkhead and
Seeds 1971; Butler 1972). The available standard se-
quences show frequently the following deficiencies:

a) The number of standard stars in the sequences is
relatively small.
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b) The limiting magnitude of the standard sequences
is lower than the limiting magnitude accessible with
photographic emulsions, i.., it does not reach a suf-
ficiently faint magnitude as would be desirable in stellar
statistics studies based on three color photometry.

¢) Generally the stars of the sequences are not equally
distributed within each magnitude interval.

The solution of these problems is purely observa-
tional, so we are forced to a certain extent to use methods
of analysis capable of extracting more meaningful infor-
mation from the available data. Taking all these into
account we have resolved to use orthogonal polynomials
for fitting calibration curves and apply an analysis of
variance to choose the best adjustment and test magni-
tude and color effects.

The polynomial equation is

<
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TR

A - P, 1
AR (1)

where Pj(x) are polynomials of degree j satisfying

n 0,if j#k
Z pi(x) P (xp) =
i=1 1,if j=k

and n is the number of points to be fitted. The coef-
ficients Aj represent the average values —average slope,
average curvature, etc.— of the data (they are referred
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to the “center of gravity” of the data-bulk). These coef-
ficients are independent of: a) the choice of the coor-
dinate system, b) the degree of fitted polynomials, and
represent physical characteristics of the data. This is
not the case in normal polynomial adjustment where
all information is referred to one point which may not
be representative of the data (Bevington 1969).

On the other hand, as orthogonal polynomials are
independent of one another and, at the same time,
the sum of the squared residuals is very easy to compute
using

S Ii— » AP )= 2 y2- ¥ A?
o — . ® .x- = rg— :
. lyl jEO j ¢ By (X i=1yl iZo i, (2)

1=

an analysis of variance can be carried out immediately
among the orthogonal terms to check by means of an
F-test (3) if the contribution of each one is significant
or not. In the last case

m

B A2 -(n—-m-1)

calc.—n2 mo

i=1 j=0

(3

F

The non-significant terms can be discarded without
recalculating all previously obtained coefficients. These
F-tests are isolated as in easier cases of analysis of variance
(Crow et al. 1960).

Two different algorithms have been tried to calculate
the polynomials. One of them based on Crout’s matrix
factorization (Acton 1966) and the other as described
by Peterson (1979), which is specially suited for small
computers and requiring single precision arithmetic
only. The same results (polynomial coefficients and their
errors) were reached with both methods; however the
latter is of easier application entailing a considerable
economy of time and memory. Therefore, we decided
to adopt it.

In. stellar. statistical procedures (namely three color
photometry of open clusters and galactic star fields)
four or more. plates of each color are needed to control
the effects of systematic errors and to maintain them
between reasonable limits (Becker 1972). In addition
to that, the calculation of a calibration curve for each
plate allows a better control of individual errors
(Tammann 1963).

b) Analysis of calibration residuals

From a physical point of view, a plot of iris readings
versus photoelectric magnitudes gives only an approxi-
mation of the calibration curve. A detailed analysis of
residuals may show a significant dependence on magni-
tude and color. Once magnitude and color equations,
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if any, are determined, the photoelectric magnitudes
can be transferred to the photographic system and a
new calibration curve may be drawn. If a further analysis
of residuals reveals no more magnitude or color depend-
ent terms this curve is taken as the final relation between
iris readings and magnitudes; otherwise we proceed
iteratively (Stock and Williams 1969).

Normally it is not found necessary to allow for
quadratic color dependent terms, therefore we have
adopted a linear model for these corrections. For each
given color there are p X q residuals (mpg — Mipe),
where p is the number of stars in the standard sequence
and q is the number of plates measured in the chosen
color. We begin then the analysis of variance with the
following model (Acton 1966):

rij = (mpg—mpe)ij =u + fi + ‘n] + eij (4)

where we are assuming that each residual is made up of
at least four parts: ’

u = a mean value common to all the residuals.

§; =a value common to every residual (of the same
star) in all the plates.

n=a value common to all the residuals in the same
plate.

gj=a random perturbation applied to every residual
with zero mean and unknown variance 02.

Later on we introduce explicitely a straight line (or
lines) in the model to account for magnitude and
color effects. The resulting table of variances informs
us about the degree of significance of these plural effects
allowing us, at the same time, to consider qualitatively
and quantitatively similarities and discrepancies among
the plates of the same color. This consideration is rather
important for the later analysis of field errors.

T
35 55 75 (iris)

Fig. 1. Calibration curve for the first plate.
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III. EXAMPLE OF APPLICATION

The method outlined previously has been programed
in BASIC language for a 9845 A Hewlett-Packard mini-
computer in our Institute. Input values (iris readings,
photoelectric magnitudes and color indices) are stored
orr magnetic tape. The interactive working mode of the
computer allows us to choose the most convenient
procedures to follow during execution. The programs

As a practical application we give in what follows the
analysis of four R plates (Becker’s RGU system). The
photoelectric sequence (open cluster IC 2581, Evans
1969) shows the difficulties mentioned above. (Figure
1). The characteristics of the photographic material
are shown in Table 1, while the photoelectric magnitudes,
color indices and iris readings are presented in Tables 2
and 3.

The limiting degree of the polynomials is ten. The

are available on request.

TABLE 1
PHOTOGRAPHIC MATERIAL USED IN THIS DISCUSSION
Plate No. Emulsion Filter Seeing texp ~ Quality Remarks
(R1)RCS 11 103a - E RG 1 good 15m good elong. image
(R2)RCS 10 ” ” ” ” ” ” ”
(R3) RCS 07 ” » medium » medium very elong. image
(R4) RCS 08 » » ” ” » elong. image
TABLE 2
STANDARD PHOTOELECTRIC SEQUENCE

No. No. (Evans) vV B-V U-B E(B-V) G G-R U-G

1 4 9.60 0.20 -0.62 043 9.79 0.69 0.63

2 5 9.77 -0.03 -0.23 0.13 9.75 0.33 1.00

3 6 11.06 0.19 -0.58 043 11.24 0.68 0.67

4 11 11.95 0.06 044 0.13 12.03 0.45 0.78

5 13 12.29 0.17 0.10 0.13 12.43 0.55 1.37

6 16 10.89 1.15 0.84 0.13 11.66 1.58 246

7 20 11.78 0.24  -0.38 043 11.99 0.73 0.89

8 21 12.97 0.27 0.17 0.13 13.19 0.66 1.46

9 25 12.26 0.23 041 0.43 12.46 0.72 0.86
10 26 13.28 0.23  -0.18 043 13.47 0.72 1.10
11 33 13.55 0.21 0.03 0.13 13.73 0.60 1.30
12 36 12.82 0.24 -0.31 0.43 13.02 0.72 0.97
13 37 13.57 0.29 -0.14 043 13.41 0.78 1.15
14 42 13.22 023 -0.34 0.43 13.42 0.72 0.93
15 59 13.56 0.37 0.14 0.43 13.85 0.86 1.46
16 68 12.96 0.86 0.43 0.13 13.71 1.33 1.78
17 74 12.35 0.06 —-0.05 0.13 12.39 0.42 1.21
18 100 13.39 0.81 0.27 0.13 14.11 1.28 1.60
19 101 13.09 0.72 0.20 0.13 13.73 1.18 1.52
20 103 14.18 0.89 0.45 0.13 14.96 1.36 1.80
21 105 13.67 0.97 0.80 0.13 14.49 1.44 2.19
22 107 13.63 032 -0.18 0.43 13.90 0.82 1.11
23 108 14.09 0.34 0.00 043 14.36 0.83 1.31
24 109 14.05 0.41 0.23 0.13 14.40 0.82 1.53
25 111 14.45 1.62 1.23 0.13 15.62 2.10 2.92
26 114 14.91 0.69 0.13 0.13 15.53 1.15 1.44
27 115 14.22 0.68 0.09 0.13 14.83 1.13 1.40
28 116 15.25 0.52 0.19 0.13 15.70 0.94 1.50
29 117 14.33 0.45 0.06 043 14.70 0.95 1.38
30 118 15.35 0.77 0.34 0.13 16.02 1.22 1.68
31 119 13.44 0.53 0.02 0.13 13.92 0.97 1.31
32 120 14.94 1.60 1.71 0.13 16.06 2.06 343
33 121 13.98 0.35 0.07 0.43 14.26 0.84 1.38
34 123 15.48 0.59 0.46 0.43 15.95 1.10 1.82
35 128 14.85 2.21 1.62 0.13 16.54 2.76 3.38
36 129 13.06 1.18 0.93 0.13 13.85 1.61 2.83
37 130 13.93 1.43 1.16 0.13 14.93 1.88 2.83
38 131 11.41 1.49 1.49 0.13 12.44 1.94 3.19

\
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TABLE 3
IRIS READINGS OF STANDARD STARS IN R FILTER2

TABLE 4
BEST FITTED POLYNOMIAL FOR R PLATE

Star No. ‘RI R2 R3 R4 Polynomial degree: 2

1 81.7 81.8 83.0 79.2 P(O)= 2.19952E+01 (+7.8E -01)

2 74.6 75.6 71.2 73.7 P(1)=-2.26493E - 01 (+29E -02)

3 64.3 65.2 68.1 63.8 P(2)= 7.85339E - 04 (+2.7E -04)

4 56.0 58.3 60.3 574

K 54.5 55.6 57.2 549 Variance of fitting =2.95 E — 02

6 69.4 70.4 73.2 68.3 F (calculated) = 8.573

7 58.8 60.1 62.8 589 Degrees of freedom = 34

8 50.2 51.5 52.9 50.7

9 55.2 55.6 58.3 54.6
10 47.7 48.9 49.9 48.1
11 46.0 47.1 47.6 464 TABLE 5
12 514 51.8 53.6 51.0 VARIABILITY OF THE RESIDUALS?2
13 46.4 46.9 48.0 46.0 ANOVA — 1 (Data variability) (0)
14 49.6 50.7 51.6 494

15 48.7 49.5 504 49.1 SS DF MS
16 53.1 54.2 56.1 53.6
17 54.1 55.0 56.3 53.7 Files (stars) 3.3722 35 0.0963
18 49.0 499 50.6 49.2 Columns (PL.) 0.0000 3 0.0000
19 51.0 51.9 529 50.3 Interaction 0.2162 105 0.0021
20 44.0 441 45.8 446 Total 3.5884 143
21 47.8 48.3 50.0 48.3
22 46.0 46.2 47.7 46.0 a. Linear model not yet introduced.
23 42.3 43.1 435 429
24 432 438 446 43.6
25 45.2 46.1 47.2 45.8 seen in Table 6 and the corresponding ANOVA in Table
26 38.7 39.7 —= 39.0 7. It is noted that the magnitude equation does not
27 433 44.1 448 43.1 ionifi 1 b h 1 SS. being “Oth
28 351 35.0 34.3 35.6 significantly contribute to the tota , being ther
29 43.6 44.0 444 429 row effects” the most relevant term. However, when
30 36.8 37.0 36.2 36.9 analyzing the color equation (Tables 8 and 9, Figure
31 48.0 49.0 50.1 47.9 2) we see that the average regression accounts for almost
32 424 42.6 42.1 42.2 2/3 of the row-variability; an F-test applied to these
33 445 45.3 449 438 . . ..
34 36.5 36.5 34.9 359 values is quite significant. In the same ANOVA table the
35 46.0 46.1 48.0 45.6 term “Dif. between slopes” does not pass an F-test,
36 53.2 54.1 56.2 534 indicating a slight additional contribution to the total
37 48.0 48.9 50.0 48.1 variability
38 68.1 68.6 71.0 66.3 .

a, Number identification as in Table 2.

computer program finds the best polynomial fitting
through an F-test (95% confidence limit) up to the
maximum degree to be considered (Table 4 and Figure
1). Photographic magnitudes of standard stars calculated
with this polynomial are stored and the residuals (mp, —

o) are obtained for each plate. With these a f%rst
evaluation of data variability is carried out displaying
a bifactorial ANOVA (ANalysis Of Variance) table
(rows = stars, ‘columns = plates) where SS=sum of the
corresponding squared residuals, DF = degrees of free-
dom, and MS =variances or mean squared residuals
(Table 5). It can be seen immediately that the most
important contribution to the total SS comes from the
rows. To extract the information contained in them we
introduce the dependence of the residuals upon color
and magnitude, adopting, as we said above, a linear
model. The results of the magnitude equation can be
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According to the results obtained above the photo-
electric magnitudes of the standard stars were corrected
for color with an equation of the form

mge = mye + aCpe + b. (5)

With the magnitude obtained in this way new calibration
curves were computed (Figure 3) and the whole process

J2 MEAN VALUES

0 i 2 35 GR

Fig. 2. Color equation for the average of the four R plates.
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TABLE 6

LINEAR MAGNITUDE EQUATIONS FOR THE FOUR R PLATES AND THE AVERAGE VALUES
Average + individual regressions (magnitude equation) — (0)

1982RMKAA. .

Y b X SSReg? SSRD
Mean values 0.000 -0.016 12.718 0.0145 0.8286
Plate nr. 1 -0.001 -0.018 » 0.0178 0.9613
Plate nr. 2 0.001 -0.015 » 0.0127 0.8397
Plate nr. 3 0.000 -0.017 » 0.0159 0.9184
Plate nr. 4 0.000 ~0.015 » 0.0118 0.8108

a. Sum of squared residuals accounted for the regression.

b. Sum of squared residuals after regression.

TABLE 7

VARIABILITY OF THE RESIDUALS2
ANOVA — 2 (magnitude equation) (0)

SS DF MS
Dif. between means (columns)  0.0000 3 0.0000
Average regression 0.0579 1 0.0579
Dif. between slopes 0.0004 3 0.0001
Other row effects 3.3143 34 0.0975
Residual variability 0.2158 102 0.0021
Total 3.5884 143

a. Introducing magnitude equations.

repeated. The results are shown in Tables 10 and 11,
where it can be seen that a new linear correction is not
necessary.

The term “Other row effects” is what Acton (1966)
designates as the ‘“‘common snakiness”, which measures
how much the average residuals oscillate around their
common (average) fitted line; ‘“Residual variability”
measures the degree of dispersion of individual residuals
around their respective regression lines.

The program enables us to analyze also the effects
of several pooled plates in the residual variability. In
this way we have at our disposal an operative index
about differences and similitudes among plates. This is
also important for the subsequent analysis of the possible
field errors, which would be the next step in usual
photographic photometry data reduction (Table 12).

35

7I5 (iris)

Fig. 3. Calibration curve for the first plate corrected of color

equations.

TABLE 9

VARIABILITY OF THE RESIDUALS?2
ANOVA -2 (color equation) (0)

SS DF MS
Dif. between means (columns) 0.0000 3 0.0000
Average regression 2.1388 1 2.1388
Dif. between slopes 0.0133 3 0.0044
Other row effects 1.2334 34 0.0363
Residual variability 0.2029 102 0.0020
Total 3.5884 143

a. Introducing color equations.

TABLE 8

LINEAR COLOR EQUATIONS FOR THE FOUR R PLATES AND THE AVERAGE VALUES
Average + individual regressions (color equation) — (0)

Y b X SSReg SSR
Mean values 0.000 -0.226 1.086 0.5347 0.3083
Plate nr. 1 -0.001 -0.244 ” 0.6184 0.3606
Plate nr. 2 0.001 -0.207 ” 0.4472 0.4052
Plate nr. 3 0.000 -0.245 ” 0.6259 0.3084
Plate nr. 4 0.000 -0.210 ” 0.4605 0.3621
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_ TABLE 10

VARIABILITY OF THE RESIDUALS OBTAINED FROM
THE NEW CALIBRATION CURVES?2
ANOVA — 2 (magnitude equation) (1)

TABLE 11

VARIABILITY OF THE RESIDUALS OBTAINED FROM
THE NEW CALIBRATION CURVES?
ANOVA — 2 (color equation) (1)

Ss DF MS SS DF MS
Dif. between means (columns) 0.0000 3 0.0000 Dif. between means (columns) 0.0000 3 0.0000
Average regression 0.0087 1 0.0087 Average regression 0.0019 1 0.0019
Dif. between slopes 0.0001 3 0.0000 Dif. between slopes 0.0140 3 0.0047
Other row effects 1.1831 34 0.0348 Other row effects 1.1899 34 0.0350
Residual variability 0.2104 102 0.0021 Residual variability 0.1965 102 0.0019
Total 1.4023 143 Total 1.4023 143

a. Introducing magnitude equations. a. Introducing color equations.

TABLE 12

VARIABILITY OF THE RESIDUALS FOR TWO GROUPS OF PLATES: (RI, R3) AND (R2, R4)
ANOVA - 3 (color equation) (1)

Variability ascribable to SS DF MS
Means:
Dif. between (1,3) & (2.4) 0.0000 1 0.0000
Dif. (+) between (1) & (3) 0.0000 1 0.0000
Dif. (+) between (2) & (4) 0.0000 1 0.0000
Slopes:
Common for all plates 0.0019 1 0.0019
Sep. for (1,3) & (2,4) 0.0138 1 0.0138
Sep. for (1) & (3) 0.0000 1 0.0000
Sep. for (2) & (4) 0.0001 1 0.0001
Residuals:
Common snakiness about Y 1.1899 34 0.0350
Sep. lin. (1,3) & (2,4) 0.0607 34 0.0018
Sep. lin. (1) & (3) 0.0681 34 0.0020
Sep. lin. (2) & (4) 0.0677 34 0.0020
Total 1.4023 143

IV. CONCLUSIONS

The method above described allows: 1) To derive in
a systematic way calibration curves free of magnitude
and color effects; 2) the control of partial results at each
stage testing them statistically.

The point of view kept in mind along the whole
reduction procedure is that any successful analysis of
data demands a careful choice of the underlying mathe-
matical model, a point often forgotten in other classical
reduction methods of photographic photometry. Our
proposed mathematical model is shown to work well,
and it is quite adequate for photographic photometry
data reduction as the authors have widely confirmed
in two other papers (in preparation) on: RGU photo-
metry of a star field in Carina and RGU photometry
of the open cluster NGC 2141.
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