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RESUMEN
Para una masa fluida que consistc de dos esferoides confocales de difercntes densidades, se de-
muestra, primero, la inexistencia de figuras de equilibrio si ambos esferoides giran con velocidad an-

gular comin y, segundo, la existencia de figuras de equilibrio si giran con difercntes velocidades angu-
lares. Se asume que el flufdo propuesto es incompresible, auto-gravitante, libre de presion externa y

que cada esferoide del modelo es homogeneo per se.

ABSTRACT

For a fluid mass consisting of two confocal spheroids each one with different density, we
demonstrate, firstly, the non-existence of-equilibrium figures if both spheroids rotate with a common
angular velocity and, sccondly, the existence of equilibrium figures if they rotate with different angu-
lar velocitics. The fluid is to be considered incompressible, self-gravitating, frec from any external
pressure and that each spheroid of the model is homogeneous per se.

Key words: HYDRODYNAMICS

[. INTRODUCTION

Incompressible self-graviting homogeneous fluids ro-
tating with constant angular velocity adopt, in general,
the ellipsoidal form, the rotation axis being coincident
with the shortest ellipsoidal axis (Lyttleton 1951). This
was demonstrated by MacLaurin for rotating spheroidal
(a special case of ellipsoidal forms) figures for any value
of their angular momentum, and by Jacobi (a hundred
years later) for rotating ellipsoidal figures, only for val-
ues of their angular momentum exceeding a certain
finite number.

In the present paper, we inquire about equilibrium
figures for a composite fluid body (rather than a single
fluid body as treated by MacLaurin or Jacobi) but each
of whose parts is also an ideal fluid of different density.

For this purpose, following MacLaurin’s rather than
Jacobi’s forms, we constructed a model consisting of
two spheroids confocal to each other and free from any
external pressure. We examine two cases: one, in which
both spheroids of the model rotate with a common
angular velocity (w) and, the other, in which they ro-
tate with different angular velocities. Each spheroid of
the model is assumed homogeneous per se.

Thus, our model can be visualized as consisting of
a “nucleus”, of density p;;, surrounded by an “atmos-
pheic”, of densily pg, confocal to the nucleus. Firstly,
we consider the cwy = wy case and demonstrate the non-
existence of equilibrivin figuics, Lastly, we turn to the

wy # wy case and demonstrate the existence of equi-
librium figures. In both cases, p, # pg.

In the next section, we obtain the equilibrium condi-
tions our model must fulfill, for either the w;,, =w,; or
the wy, # wy case.

II. EQUILIBRIUM CONDITIONS

For a fluid at rest, under the action of conservative
forces, the equilibrium condition follows from Euler’s

_equation (Milne-Thomson 1968): one needs only to take
zero for the velocity at each point of the fluid in that

equation, and integrate it over its volume to obtain

P=p B + constant , €))

where P is the pressure, p the density and B the gravi-
tational potential. If the fluid is rotating, as we will
assume throughout this paper, then equation (1) must
be modified into

Plp =B + Vhw? (x3+x%) + constant )

—> N i . .
where w = wk, and k is the unit vector along the x3 axis.
In particular, equation (2) becomes:
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B+ hw? (Xi +X§) + constant=0 , (3) ""atmosphere" (x{yXp ,X3) (L""Z"‘B)
- ~
. N
/ \
on the surface of the fluid, because we assumed that P = a + \p =0 )
0 at each point on it. N 7

Denoting the left hand side of equation (3) by ¢ and
the surface equation by f(x; ,X;,X3) =0, then the fol-
lowing ratios must be satisfied (Lyttleton 1951)

¢X1 /le = ¢x2/fx2 =¢x3/fx3 5 (4)

where the subscripts stand for partial derivatives.

Each point of the surface must therefore satisfy equa-
tion (4). Another physical condition our model must
satisfy is

Py=P; , (€))

deduced from the continuity of the pressure across the
surface that divides the nucleus and the atmosphere; to
be certain, equation (5) holds only if matter does not
flow, in either sense, across that boundary surface and if
surface tension is disregarded, as we will assume.

In the next section we present the well known expres-
sions for the potential of homogeneous ellipsoids, which
will be particularized for spheroids later on.

a) Potential of Homogeneous Ellipsoids
The potential of a homogeneous ellipsoid at an inter-

nal point (Chandrasekhar 1969) is given by the integral
expression

* du x?
B=nGpa; a, a f —|1-=—), 6
1 42 43 A A( a12+u ()

where A% = (al+ u)(a3+ u)(a3+ u);

a;, a5, and a3 being the ellipsoid semiaxes, G the gravi-
tational constant and again, the density. Expression (6)
is valid also for an external point if one replaces the
lower limit of the integral by A, the ellipsoidal coordi-
nate of the considered point, that is, the positive root of

2
i

a? +

=1 . N

b) Construction of the Model

Because the potential of homogeneous ellipsoids is
well known (equation 6) and since such an expression is

"nucleus"

Fig. 1. The artifice used for obtaining the potentials of the nu-
cleus and the atmosphere, respectively.

easily integrable in the case of spheroids, these forms
were chosen for the nucleus and atmosphere of our fluid
body. Furthermore, these spheroids were assumed con-
focal (as it will be justified later on).

With the help of Figure 1, which simulates our model,
we can deduce the potentials B;;, at each point of the
nucleus and By, at each point of the atmosphere.

To deduce B, we proceed as follows: we consider
first a completely homogeneous ellipsoid of density p,
and calculate the potential at an internal point (x; ,X5 ,X3);
inside this homogeneous ellipsoid we place a fictitious
homogeneous ellipsoidal nucleus of density py—pg,, to
compensate the excess density of the former calculation,
and calculate the potential at the same point (x;,x;,X3),
which is now an external point.

Adding up both potentials, we obtain

oo du X;z
B,= 71Gp,a, aazaasf — [ 1-Z
0

A a§i+u
+ ) =l s )
—p.)a, a, a — -
(Pn—Pa n, %n, DSA A a?li_*_u

where a; and a, stand for the atmosphere and the nu-
cleus semiaxes respectively. The integrals in equation (8)
are easily evaluated if we restrict to the case where a; =
1
3,, an, =2p,, that is, to spheroidal figures. In this
case, integrating equation (8) (MacMillan 1958), we have

27 paag1 2, x? +x%-2x2

B, -
2 .24} 2 2
(aal —aaa)/z 2(aal —aaa)
1
a2 —a2 \”
s —1 1 3
sin +
2
ag,
2 2
Thaa;, . TPaay .
+ X3 +x3 — 2x3 +
2 .2 2 2
a; —ag a, —ag
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2

21(pp—p,) af]l ap x? +x3 —2x3

+ 1
1
(afll ﬁafla)/2 Z(af11 —a%s)
Z
1 ap —ap, ’
sin +
\ ah ap +2A

(pn"'[)a)agl 3%3 @@, + }\)1/2 x +x3

% -ap ay +A
7T(pn“'oa)a121l an, 2x3 ©)
-, (&, + 0¥

By looking at Figure 1, it is clear that expression (9)
for A =0, also gives the potential By, at each point in the
nucleus. Now, if one tries to use expression (9) as such,
one finds that it is impractical because A is a complicated
function of x;,x,,Xx3 (see equation 7) so, we must
simplify further our model. To this end, we will assume
that the nucleus and the atmosphere are confocal, be-
cause then, A would be constant all over the external sur-
face. The confocality relations for our model are

2 _ .2
ag, —an3+7\,
2 _ .2
aa,_an,"')‘ ,
2 2,2 a2
a; —a; =ag e,
2 2,2 .2
Ay, —ap, Tan €y . (10)

ore,le, = 3, /a,,l > 1, where e, and e, stand for the ec-
centricities of the nucleus and the atmosphere, respec-
tively. So, in this work we will always have e, > e,.

¢) Equilibrium Conditions for Rigid Body Rotation
(Case wy = wg) ‘
Let us imagine that our body remains isolated from
any external pressure. Equation (3) expresses this fact

for an arbitrary fluid. For our model, equation (3) be-
comes

¢ + constant =B, + > w?® (x] +x3) + constant , (11)

where By, given by equation (9), is a complicated func-
tion of x;,X,,X3, unless we restrict ourselves to con-
focal spheroids, as we will do it in the rest of the paper.

We now use the surface equation of the atmosphere

x2 x2 x3
fa = T + _2 + '2— ‘*1 5 (12)
aal aal ' aas

together with equation (10) and (11) to obtain (after
making these expressions to fit equation 4)

(1—e2)” (3-2¢2)

Q=
3

€a

(1—-€2)” (3—2¢?)
+ e | sinThe,

3
en

3(1-e2)  3e,(1—ef)/2(1-¢})”

— €, (13)
e; e
w2
where Q?* =
2nGp,
Pn—P,
and € =

Pa

This equation is a relation for w containing the param
eters that give the geometrical and physical structure of
our model. Note that if one sets p;; = p, in equation(13),
one recovers the familiar relationship for homogeneous
spheroids (Chandrasekhar 1969).

Expression (13) is a relationship between w, e, and
e,, and it represents a two parametric family of equilib-
rium figures for a given €, that is, for a given density
ratio p,/p,. For fixed, w, we have then an infinite num-
ber of equilibrium figures, each with their own eccen-
tricity values e,, e,: the same density distribution and
the same angular velocity give figures with different ob-
lateness values of the nucleus and the atmosphere. This
ambiguity can be removed by using the other condition
our model must fulfill, that is, the continuity of pressure
at the surface that divides the nucleus and the atmos-
phere; this is equation (5) and can be written as
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¢ = paBa + 1/2 pa(x% +X%)OJ2 _pan

— % pp(x} +x3)w* + constant . (14)

Using the surface equation of the nucleus

_xi X3  x2

fo = —4+— +— 1 (15)
a? 2 2
n, ap  ap

together with equations (10) and (14), and the fact that

P2 —Pup, = ~€P2 (16)

we obtain (after making these expressions to fit equation
4).

(1—-e2)% (3—2¢2) 3-2e —¢2
Q* = sinte, -—— +
e e?
a
1
(1-€2)2(3 2¢2) . 3(1—¢?)
+ esint e, —e€ . (17)
3 n 2
e1’1 en

Combining equation (13) (deduced from the fact that
no external pressure acts on the body) and equation (17)
(deduced from the continuity of the pressure across the
surface that divides the nucleus and the atmosphere) we
obtain

€ = —‘(en/ea)3 2(e2 —e2) l:(l——e;)y2 sin™! e, — ea:”
/l (1—e2)"% [(3 2e2)sin™' e, — (3-2e})sin"! e
+ 3e, (1—€2)%-3e, (1_eg)'/z]}, (18)

which gives € as a function of both e, and e,.

c) Non-existence of Equilibrium Figures
(case wy = wg)
Relation (18) is decisive to dilucidate whether or not

equilibrium figures can exist for our model because, if
we can show that e < —1, then no equilibrium figures

J5 1

S0 L

25 1

00 L 1 L ] 1

Fig. 2. Plot of ¢ vs. e, for different values of ey.

are possible. This assertion comes from the fact that e =
Pn/pg —1 and negative densities are not allowed. If, how-
ever, —1 < e <0, then p, > py,; > 0, but this case is not
a current one.

Table 1 gives the € values as calculated from equation
(18) for case wy = w, when e, and ey, are varied through
an increasing set of values, and conformed the basis to
reach our conclusion, that is, that no equilibrium figures
exist under these circumstances. A typical column gives,
for fixed ey, the calculated € values when e, is varied
through a set of increasing values. Each column shows
two trends: one, in which ¢, >e; and e < —1 and the
other one, in which e; > e, and —1 <e <O0. This last
case is not allowed since from equation (10) we deduced
that e; > e,. Figure 2 is the graphic representation of
€, as a function of e,, for some ey values.

d) Equilibrium Conditions for Rigid Body
Rotation (case wy # wy)

We now wish to treat the case wj # wy. For this

- purpose we return momentarily to §llc of the first ana-
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lyzed case and make the corresponding considerations.
In this case, equation (3) becomes

¢ + constant = B, + % w? (xI+ x3)

+ constant

’

(19)

297

where this equation differs from equation (11) of the
former case, only in that a subscript is now attached to
the angular velocity. We now make use of equation (12)
for the surface equation of the atmosphere, together
with equations (19) and (10) to obtain (after making

these expressions to fit equation 4).

TABLE 1
DEPENDENCE OF —€ ON THE PARAMETERS ey, ey,.
TAKEN FROM EQUATION (18) FOR THE CASE wy, = w,

“n

e, .05 .10 15 .20 .25 .30 .35 40 45 .50
1.934 2.226 2.335 2.382 2402 2410 2408 2.403 2.393
.10 0.242 1.599 1.931 2.111 2.211 2,270 2.303 2.321 2.329
.15 0.0823 0.473 1.434 1.731 1.926 2.052 2.134 2,188 2.223
.20 0.0363 0.240 0.604 1.339 1.597 1.785 1.919 2.013 2.081
.25 0.0189 0.134 0.372 0.6837 1.278 1.503 1.678 1.811 10911
.30 0.0110 0.0812 0.239 0.4705 0.737 1.235 1.439 1.595 1.724
.35 0.0069 0.0522 0.160 0.3297 0.544 0.7748 1.204 1.382 1.531
.40 0.0046 0.0353 0.111 0.2363 0.405 0.5994 0.8029 1.181 1.341
45 0.0032 0.0248 0.0792 0.1731 0.3048 0.4655 0.6428 0.8243 1.163
.50 0.0023 0.0180 0.0582 0.1294 0.2326 0.3638 0.5151 0.6772 0.8412
.55 0.0017 0.0134 0.0437 0.0984 0.1799 0.2866 0.4140 0.5558 0.7049 0.8547
.60 0.0013 0.0102 0.0334 0.0761 0.1407 0.2275 0.3342 0.4565 0.5893 0.7272
.65 0.0010 0.0079 0.0260 0.0595 0.1112 0.1820 0.2709 0.3754 0.4921 0.6167
.70 7.81x 107* 0.0061 0.0204 0.0471 0.0887 0.1465 0.2204 0.3092 0.4106 0.5215
75 6.17x10™* 0.0049 0.0162 0.0376 0.0712 0.1184 0.1798 0.2549 0.3422 0.4398
80 4.90x 10™* 0.0039 0.0129 0.0301 0.0573 0.0960 0.1469 0.2100 0.2846 0.3695
.85 3.90x 10™* 0.0031 0.0103 0.0242 0.0462 0.0778 0.1198 0.1724 0.2356 0.3085
90 3.10x 10™* 0.0025 0.0082 0.0193 0.0370 0.0626 0.0969 0.1404 0.1931 0.2548
95 2.42x10™* 0.0019 0.0064 0.0151 0.0291 0.0493 0.0767 0.1117 0.1546 0.2053
€n
e, 055 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
2.382 2.370 2.357 2.346  2.339 2.343 2.368 2.446 2.714 4205
.10 2.330 2.327 2.322 2,317 2315 2322 2.350 2431 2.699 4.185
15 2.244 2.257 2.264 2,269 2275 2.288 2.321 2405 2.675 4.152
20 2.128 2.161 2.184 2202 2.218 2.240 2.280 2.369 2.641 4.106
.25 1.985 2.041 2.084 2.117  2.146 2.179 2,227  2.323 2.597 4.046
30 1.825 1.904 1.966 2.017 2061 2.105 2.163  2.266 2.543 3972
35 1.654 1.754 1.836 1.903 1.962 2.020 2.089 2.200 2,480 3.885
40 1479 1.597 1.696 1.780 1.854 1924 2.004 2.124 2406 3.783
45 1.309 1.439 1.551 1.649 1.737 1.820 1.911 2.039 2.324 3.668
.50 1.149 1.284 1.406 1.516 1.615 1.709 1.810 1.946 2.232 3.538
.55 1.137 1.264 1.381 1490 1.594 1.704 1.846 2.132 3.394
.60 0.8654 1.128 1.249 1.364 1475 1.592 1.740 2.024 3.253
.65 0.7452 0.8739 1.122  1.239 1.355 1.477 1.628 1.908 3.062
.70 0.6388 0.7593 0.8803 1.118 1.236 1.360 1.512 1.785 2.873
.75 0.5452 0.6560 0.7698 0.8847 1.117 1.241 1.392 1.654 2.667
.80 0.4629 0.5631 0.6680 0.7761 0.8864 1.121 1.268 1.515 2.440
.85 0.3902 0.4752 0.5741 0.6736 0.7768 0.8843 1.138 1.365 2.187
90 0.3249 0.4024 0.4863 0.5755 0.6694 0.7681 0.8745 1.199 1.892
95 0.2636 0.3288 0.4003 0.4772 0.5587 0.6448 0.7368 0.8424 1.514
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L (1-€2)%(3.-2¢2) .
Q; = ; sin"" e, + ;
ea en

(1) (3-2¢2)

3(1-€2) 3ea(1—e?l)yz(l—e:gl)yZ

X esinT'e, — € (20)
e; €hn
wazx Pn—Pa
where Q2 = and € =
2nGp, Py

Expression (20) (which is identical to equation 13) is
a relationship between wy, €, and ey and it represents
again a two parametric family of equilibrium figures for
a given €, that is, for a given density ratio on/pg. But
since we inquire about equilibrium figures with
wy, # Wy, We must treat wy on the same footing as wg.

We can obtain another independent expression, with
the same parameters as those involved in equation (13),
and with wy, as well, if we now use the continuity condi-
tion for the pressure across the surface that divides the
nucleus and the atmosphere, which can be written as(see
equation 5).

¢ = paBa + Vzpa(x% + X%)wg - pan

—Ypa(x3 + x3)w3 +  constant (21)

where this equation differs from equation (14) of the
former case, only in that subscripts are now attached to
the angular velocities. We now make use of equation
(15) for the surface equation of the nucleus, together
with equations (10), (16) and (21) and taking into ac-
count equation (4) to obtain

(1—e2)(3-2¢2)
Qe+ 1)- Q2% = —-———;—— e sinle, +
a

(1—e})” (3-2¢])

+ e*sin"l e,
en
3—e2-2e2 3(1-¢2)
- € — e . (22)
e e2

Combining equations (20) and (22), we obtain

© Universidad Nacional Autéonoma de México *

(e
Qe+ 1) = (3-2¢%) sin"'e,
en
3(1—-e2) (1-e2)”:
Ml e+ | — (32 sine,
2 3
en ea
3e,(1—e2)” (1—e2)” 3—e2-2¢2
- —
€n eg
(1-ep)”
+ (3”263) sinTte,| € +
e
(1-e})”
+ — (3-2¢%) sin'e,
ea
3(1—€2)
T e (23)
ea

which gives wy, as a function of €, e, and e;.

e) Existence of Equilibrium Figures
(case wy # wy)

Relation (23) is decisive to- dilucidate whether or
not equilibrium figures can exist, because if we can show
that the right hand side of equation (23) is positive, then
such equation will be soluble, since its left hand side is
positive definite (because € > 0) and there will be equi-
librium figures.

Let us take the rectangular parenthesis which is fac-
tor of €2 in equation (23). After factorizing, we get

e [

3
n

3-2¢2) sin e, -3en(1—e§])1/2] . (24)
€

Let us call
fle)=(3 —2¢*)sin" e —3e (1 —e?)%,
which becomes
f(y)=(3 — 2sin’y) y — 3 siny cosy,
after the change of va;iable

y=sin"! e.
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TABLE 2

Q3,Q} VALUES FOR CASE wp # wy, FOR DIFFERENT
PARAMETERS €, e, e,. TAKEN FROM EQUATION (23)

ey Q3 Q} en Q} Q3 ey Q3 Q3
e=.1
e,=.1 e,=.2 e,=.3
15 .003557 .002749 .25 .012759 .011270 .35 .028021 .025811
2 .004623 .002703 3 .014309 .011037 4 .030003 .025293
3 .007768 .002679 4 .018630 .010853 5 .035433 .024784
4 .012198 .002674 .5 .024345 .010788 6 .042439 024562
.5 .017903 .002672 .6 .031383 .010760 7 .050861 .024451
.6 .024884 .002671 .7 .039724 .010745 .8 .060630 .024388
.7 .033139 .002671 .8 .049346 .010737 9 .071640 .024349
.8 .042656 .002670 9 .060166 .010732
9 .053352 .002670
ey, =.4 €a=-5 e,=.6
45 .049611 .046620 .55 .077860 .073995 65 113077 .108197
.5 .052020 045745 .6 .080713 .072685 i .116404 .106335
.6 .058552 .044762 .7 .088392 .071070 .8 .125303 .103861
i .066382 044268 .8 .098115 .070163 9 .136428 .102301
.8 076753 .043991 9 .109457 .069592
9 .087975 043816
e,=.7 e,=.8 e,= .9
.75 .155236 149113 .85 .202644 .194870 95 243975 233680
.8 159045 146475 .9 206711 .190844
9 169102 142653
e=.5
e,=.1 e,=.2 e,=.3
15 .006724 .003063 .25 1020421 .013441 .35 .042354 .318230
2 011261 .002834 3 .027103 .012274 4 .051010 .029234
3 .024602 .002717 4 .045521 011354 .5 .074301 .026691
4 .043423 .002689 .5 .069860 .011031 .6 .104214 .025581
.5 067724 .002679 .6 .099890 .010809 7 .140161 .025024
.6 .097543 .002675 .7 135537 .010819 .8 .181702 024711
7 132879 .002673 .8 176541 .010778 9 227231 .024513
.8 173497 .002672 9 1221368 .10753
9 217874 .002671
e, =4 €, =.5 e,=.6
45 .072955 .058564 .55 .112700 .093992 65 .162002 .138285
.5 .083581 .054189 .6 1125380 .087439 7 176837 128973
.6 111755 .049276 7 .158604 .079364 .8 215186 .116603
7 147368 .046806 .8 .199974 .074832 .9 261136 .108802
.8 .189280 .045419 9 246722 071974
9 235588 .044545
e, =.7 c,=.8 c,=.9
.75 1220710 190882 .85 .285872 .248034 95 329721 31748
.8 .237590 177695 9 .303099 227903
9 279621 158582
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TABLE 2 (CONTINUED)
en o % e 24 2 en % %
e=1
eg=.1 e,=.2 €,=.3
15 .010256 .003456 .25 .029471 016155 .35 .059686 .039339
2 .018238 .002999 3 .041368 .013822 4 .075270 034169
3 .041645 .002765 4 .073827 .011981 .5 116548 .029074
4 .074703 .002708 .5 116675 011334 .6 .169337 .026856
5 117500 .002689 6 .169641 .011052 7 232755 025740
.6 .170149 .002680 1 .232610 .010909 .8 .305795 025114
7 232652 .002676 .8 .304843 .010830 9 .383758 .024719
8 .304306 1002673 9 381755 010779
9 .380542 .002672
e, =4 €,=.5 e, =6
A4S .101501 073494 .55 .155560 .118987 .65 222344 .175894
5 .120804 .064744 .6 178741 .105881 7 .249586 157271
.6 .170985 .054919 N .238075 .089731 .8 .317836 132530
7 .233903 .049978 .8 .310858 .080667 9 396433 116929
8 .307498 .047205 9 390651 .074951
9 .386631 .045456
e,=.7 e,=.8 e,=.9
.75 .301663 243094 .85 .388748 .314490 95 450270 354425
.8 332445 216721 9 418925 274227

9 405163 178494

201

If we can show that f(e) is positive, so it will be
expression (24). The derivative of f(y) is
o

f'(y)=4senycosy (tany —y)

and since (tan y —y)>0 in the interval o<y <7/2,
f'(y) is positive and so f(e) is an increasing function o aj
(since 0<<e<1). Besides, f(¢)=0 for e=0, so that '
f(e) is also positive. Similar reasoning for the rest of the
rectangular parentheses of equation (23) show that they R
all are positive. This reasoning was the basis to reach our
conclusion, that is, that equilibrium figures do exist
under these circumstances.

Table 2 for case wy# w; gives, for some values

~

g
m~

>

-.05[

~.10L

of €, the values of Q2 and Q2 as calculated from equa-
tions (20) and (23), respectively, and confirm our deduc-
tion. A typical section give, for fixed values of € and eg,
the values of Q2 and Q2 when e, is varied through an
increasing set of values.

From equations (20) and (22) we can see that, as
e~ 0, Q2 — Q2, meaning that equilibrium figures exist
if our model is homogeneous and rotates with a single
constant angular velocity. If € > —1, w Q2% - —oo . The
range —1 < e <0 corresponds to the case p; > p, >0,
this case is not a current one (see Figure 3).

Fig. 3. Plot of e vs. % showing the general trends followed

" by ©} and Q}, as outlined in the text (fore, = 0.4, e, = 0.2).
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