RESULTADOS NUMERICOS EN EL PROBLEMA DE TRES CUERPOS

F. López-García

Observatorio Astronómico "Félix Aguilar" Universidad Nacional de San Juan, Argentina

RESUMEN

Se estudia numéricamente la evolución final de un sistema de tres cuerpos con masas finitas. Se consideran los casos elíptico-hiperbólico y elíptico-parabólico y la formación de un sistema binario. La integración numérica se efectuó aplicando el método de prolongaciones analíticas. Se considera el caso de posibles colisiones binarias. También se estudió la variación de los elementos elípticos después de la formación de una binaria.

ABSTRACT

Final evolution of a three-body system with finite masses is studied numerically. Elliptic-hyperbolic and elliptic-parabolic cases are considered. The formation of a binary system is also considered. The numerical integration is made using analytic prolongation methods. Possible binary collisions are considered. The variation of elliptic elements after the formation of a binary is also studied.

Key words: GRAVITATION - STARS-STELLAR DYNAMICS

I. INTRODUCCION

El problema de los tres cuerpos consiste en deterninar el comportamiento dinámico del sistema que se mueve en un campo gravitatorio o con una ley arbitraria le atracción. Las dificultades matemáticas que presenta la solución de este problema fueron ya reconocidas por Newton en 1687, siendo desde entonces uno de los problemas más interesantes en Astronomía y Matemáticas.

Existe una extensa literatura sobre el tratamiento de este problema; Marchal (1976) da una bibliografía muy completa y se han encontrado soluciones de tipo cerrado para casos particulares, solución colineal (de Euler), solución equilátera (de Lagrange), así como también soluciones periódicas, quasi periódicas, soluciones al problema restringido, etcétera.

II. CONSIDERACIONES GENERALES

El objeto de este trabajo es presentar algunos resultados obtenidos numéricamente del problema general de os tres cuerpos. Las clases de movimientos estudiados son del tipo elíptico-parabólico y elíptico-hiperbólico según la clasificación de Chazy (1918, 1922, 1929, 1932), ya que éstas son las de mayor interés en Astronomía. Se eligen las unidades de masa, tiempo y listancia tales que la constante gravitacional sea igual a a unidad (k = 1).

Las ecuaciones diferenciales del movimiento están

escritas en coordenadas de Jacobi. El movimiento de los tres cuerpos se realiza en un plano, debido a la influencia de su mutua gravitación. Los cuerpos considerados son puntos masa y las fuerzas de atracción son fuerzas newtonianas. Las masas de los cuerpos participantes son del mismo orden de magnitud y sus distancias en el instante inicial son también del mismo orden. La evolución dinámica del sistema de tres cuerpos ha sido estudiada mediante integración numérica, aplicando distintos métodos para comprobar la validez de los resultados obtenidos. Los procesos de cálculo que se utilizaron son:

- i) Método de prolongaciones analíticas.
- ii) Método de Runge-Kutta de cuarto orden.
- iii) Conservación de la invariancia de las integrales del movimiento, como confirmación de los resultados numéricos obtenidos.

Se incluyó también la posibilidad de una gran aproximación entre dos de los tres cuerpos, en cuyo caso se regularizaron las ecuaciones diferenciales del movimiento, aplicando la transformación del problema de las colisiones binarias. En general los casos estudiados no presentaron colisiones.

Suponiendo que m_1 y m_2 son los cuerpos que forman el sistema binario, los cuatro elementos orbitales elípticos (en el plano) del punto masa m_2 , es decir, a_2 , e_2 , w_2 y T_2 , para $t > t_0$, son calculados respecto a m_1 , y los cuatro elementos orbitales del cuerpo restante, en este caso m_3 , o sea, a_3 , e_3 , w_3 y T_3 , para $t > t_0$, son calculados respecto a la atracción del sistema binario m_1 m_2 , es decir, considerando el movimiento de m_3

107

respecto al centro de masa de m_1 y m_2 . Estos elementos son calculados con las fórmulas estándar del problema de los dos cuerpos, para los casos elíptico, parabólico e hiperbólico.

Para determinar el tipo de movimiento que realizan los tres cuerpos, para valores de t muy grandes, se estudió el comportamiento del semi-eje mayor a y de la excentricidad e, tanto para el caso elíptico (sistema binario), como para el cuerpo que se aleja respecto del baricentro del sistema binario. También se ha comprobado el tipo de movimiento considerando las energías de las masas interiores (sistema binario) y la energía del cuerpo que se aleja (energía de escape). De este modo se ha podido verificar el tipo de movimiento que se tiene para las condiciones iniciales dadas, para todo t mayor que cierto t_i prefijado.

III. CONDICIONES INICIALES

Las unidades elegidas son tales que la constante gravitacional de Gauss es igual a uno, k=1, entonces la unidad de tiempo, año sidéreo, es igual a 2π . Se ha supuesto que las tres masas interactuantes son iguales: $m_1=m_2=m_3=1$. En la configuración inicial m_1 está equidistante de m_2 y m_3 y su posición está referida al centro de masa de estos dos cuerpos. La posición de m_3 está dada respecto de m_2 . Las velocidades de los tres cuerpos están dadas con respecto al centro de masa de m_2 y m_3 . La velocidad de m_1 es paralela al radio vector que une m_2 y m_3 y las velocidades de estos dos cuerpos son perpendiculares a dicho radio vector. Sean V_1 , V_2 y V_3 las velocidades de m_1 , m_2 y m_3 relativas al centro de masa de m_2 y m_3 y sea r el radio vector que las une, entonces de acuerdo a lo expresado anteriormente:

$$v_1 \parallel r, y v_2, v_3 \perp r$$
.

Sean ξ , η , $\dot{\xi}$ y $\dot{\eta}$ las coordenadas y componentes de la velocidad de m_1 y x, y, \dot{x} , \dot{y} , las coordenadas y componentes de la velocidad de m_3 . De acuerdo al sistema de coordenadas adoptado (sistema de Jacobi), la posición y velocidad de m_1 y m_3 son, para t=0, las presentadas en la Tabla 1.

En los ejemplos VII y VIII presentados en la Tabla 1 los tres cuerpos están alineados inicialmente. Los siete primeros ejemplos fueron propuestos por Becker (1920) y el último es debido a Zumkley (1941).

IV. ECUACIONES UTILIZADAS

Respecto de un sistema de coordenadas cuyo origen es el centro de masa de los tres cuerpos, sean $\mathbf{r}_i(\mathbf{x}_i,\mathbf{y}_i)$ y $\dot{\mathbf{r}}_i(\dot{\mathbf{x}}_i,\dot{\mathbf{y}}_i)$ los vectores posición y velocidad del punto de masa \mathbf{m}_i (i=1,2,3). Por lo tanto, los vectores \mathbf{r}_i y $\dot{\mathbf{r}}_i$ satisfacen las condiciones:

$$\sum_{i=1}^{3} m_i \mathbf{r}_i = 0 \quad ; \qquad \sum_{i=1}^{3} m_i \mathbf{\dot{r}}_i = 0 \quad .$$

Haciendo, $\mathbf{r} = \mathbf{r}_3 - \mathbf{r}_2$ y $\boldsymbol{\rho} = (\mathbf{M}/\mu)\mathbf{r}_1$, se obtienen los vectores en coordenadas de Jacobi, donde, $\mathbf{M} = \mathbf{m}_1 + \mathbf{m}_2 + \mathbf{m}_3$ y $\boldsymbol{\mu} = \mathbf{m}_2 + \mathbf{m}_3$, siendo $\mathbf{r} = \mathbf{r}(\mathbf{x},\mathbf{y})$ y $\boldsymbol{\rho} = \boldsymbol{\rho}(\boldsymbol{\xi},\boldsymbol{\eta})$.

Las ecuaciones diferenciales del movimiento de los tres cuerpos en coordenadas de Jacobi son:

$$\dot{\mathbf{r}}^* = \mathbf{k} \frac{\mu}{\mathbf{r}_3} \mathbf{r}$$

$$+ \mathbf{k} \, \mathbf{m}_1 \left[\frac{\rho - \mathbf{m}_2 \, \mu^{-1} \, \mathbf{r}}{\mathbf{r}_{13}^3} - \frac{\rho + \mathbf{m}_3 \, \mu^{-1} \, \mathbf{r}}{\mathbf{r}_{12}^3} \right]$$

TABLA 1
EJEMPLOS ESTUDIADOS

Caso	m_{1}				m_3				Ci-4- ii- 1-tu- it-
	ξ,	$\eta_{_0}$	į ,	$\dot{\eta}_{0}$	X ₀	y _o	х _о	ý,	Sistema binario para t > 0
I	3	0	0	-0.5	0	1.5	2.2	0	m ₁ , m ₃
II	3	0	0	-1.5	0	0.3	4.0	0	m_1, m_3
III	3	0	. 0	-1.0	0	1.5	2.0	0	m_1, m_2
IV	3	0	0	0.9	0	1.5	1.9	0	m_1, m_2
V	3	0	0	1.0	0	1.5	2.0	0	m_1, m_2
VI	3	0	0	0.3	0	1.5	2.3	0-	m_1, m_3
VII	0	0	0	2.0	0	0.3	7.0	0	m_1, m_3
VIII	2	0	0	1.75	-1	0	0	-1.5	m_2, m_3

$$\dot{\rho} = -k \frac{M m_2 \mu^{-1}}{r_{12}^{3}} (\rho + m_3 \mu^{-1} r)$$

$$-k \frac{M m_3 \mu^{-1}}{r_{13}^{3}} (\rho - m_2 \mu^{-1} r) ,$$

londe las distancias r_{12} y r_{13} se calculan teniendo en cuenta las expresiones vectoriales:

$$r_1 - r_2 = \rho + m_3 \mu^{-1} r ; r_1 - r_3 = \rho - m_2 \mu^{-1} r .$$

Sea, $a_1 = m_2$ $m_3 \mu^{-1}$ y $a_2 = m_1 \mu$ M⁻¹ dos cantidades escalares; entonces las integrales del movimiento toman a forma: para la integral de la energía

$$\exists = \frac{1}{2} a_1 \dot{r}^2 + \frac{1}{2} a_2 \dot{\rho}^2 - k \left(\frac{m_1 m_2}{r_{12}} + \frac{m_1 m_3}{r_{13}} + \frac{m_2 m_3}{r} \right) ,$$

londe

$$\dot{\mathbf{r}}_2 = \dot{\mathbf{x}}^2 + \dot{\mathbf{y}}^2$$
, $\dot{\rho}^2 = \dot{\xi}^2 + \dot{\eta}^2$

y para la integral del momento angular

$$\mathbf{C} = \mathbf{a}_1 \ (\mathbf{r} \times \dot{\mathbf{r}}) + \mathbf{a}_2 \ (\boldsymbol{\rho} \times \dot{\boldsymbol{\rho}}) \quad .$$

El momento de inercia del sistema de tres cuerpos está lado por

$$2I = a_1 r^2 + a_2 \rho^2$$
, donde $r^2 = x^2 + y^2$, $\rho^2 = \xi^2 + \eta^2$

si suponemos que los cuerpos m₂ y m₃ forman un istema binario, la energía del mismo se expresa como:

$$E(B) = \frac{1}{2} \frac{m_2 m_3}{(m_2 + m_3)} \dot{r}^2 - k \frac{m_2 m_3}{r} ,$$

y su momento angular es:

$$C(B) = \frac{m_2 m_3}{(m_2 + m_3)} (r \times \dot{r})$$
.

La energía del cuerpo que se aleja, en este caso m_1 , está dada por la expresión:

$$\begin{split} E\left(m_{1}\right) = & \frac{1}{2} \;\; \frac{m_{1} \; (m_{2} + m_{3})}{M} \quad \dot{\rho}^{2} \\ & - k \;\; \frac{m_{1} \; m_{2}}{r_{12}} \; + \frac{m_{1} \; m_{3}}{r_{13}} \quad , \end{split}$$

y su momento angular tiene la expresión:

$$\mathbf{C}(\mathbf{m}_1) = \frac{\mathbf{m}_1 (\mathbf{m}_2 + \mathbf{m}_3)}{\mathbf{M}} \quad (\boldsymbol{\rho} \times \boldsymbol{\dot{\rho}}) .$$

Cuando la distancia del cuerpo m₁, respecto al baricentro del sistema binario, es muy grande, su energía se puede expresar asintóticamente como:

$$E(m_1) \sim \frac{1}{2} \frac{m_1(m_2 + m_3)}{M} \dot{\rho}^2 - k \frac{m_1(m_2 + m_3)}{\rho} .$$

V. COMENTARIOS

En los casos estudiados, el movimiento del sistema de tres cuerpos se realiza en un plano; ésta es una restricción muy importante. Otra observación es que los resultados para los diferentes tipos de movimiento se han obtenido a partir de procesos de integración numérica y su comprobación se ha basado en la invariancia de las integrales del movimiento. Otra restricción, es que las masas de los cuerpos son consideradas iguales y que las distancias mutuas iniciales (para $t=t_0$) son del mismo orden de magnitud.

REFERENCIAS

Becker, L. 1920, M.N.R.A.S., 80, 590. Chazy, J. 1918, Bull. Astr., 35, 321. Chazy, J. 1922, Ann. Ecole Norm. Sup., 39, 29. Chazy J. 1929, J. Math Pures Appl., 8, 353. Chazy, J. 1932, Bull. Astr., 8, 403. Marchal, C. 1976, in Long-Time Predictions in Dynamics, eds. V. Szebehely and B.D. Tapley (Dodrecht: D. Reidel), p. 181. Zumkley, J. 1941, Astr. Nachr., 272, 66.

Francisco López García: Universidad Nacional de San Juan, Observatorio Astronómico "Félix Aguilar", Av. Benavides 8175 Oeste, 5407 Marquesado, San Juan, Argentina.