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RESUMEN

Se describen los métodos tedricos desarrollados actualmente para el cdlculo de las secciones
cficaces de excitacidon de iones positivos por impacto electrénico. Se presentan resultados recientes de

interés astrofisico.

ABSTRACT

The current theorctical methods developed for the calculation of electron impact cxcitation cross
sections of positive ions are described, and illustrated with recent results of astrophysical interest,
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I. INTRODUCTION

The interpretation of astronomical observations and
the understanding of physical processes and conditions
in stellar objects require an enormous quantity of
accurate atomic data. This brings in an interesting
interplay between observations and atomic physics, and
in many cases it is the latter that lets the astronomer
down and delays progress in such enterprises.

Emission lines, which are mainly produced by elec-
tron impact excitation of positive ions, provide useful
diagnostics on the physical conditions of astronomical
objects such as temperature, density and abundance of
elements. Also, in the modelling of hot star atmospheres,
where emission lines are present, it is necessary to con-
sider departures from LTE, and thus take into account
in detail all radiative and collisional processes that popu-
late the levels. Consequently, a great deal of effort has
been given in the past three decades to obtain accurate
electron impact excitation rate coefficients of positive
ions in different stages of ionization. Owing to experi-
mental difficulties, particularly in connection with mul-
tiply-ionized species, the determination of excitation rate
coefficients of astrophysical interest relies on calculation.
~ The original intention of this paper was to review the
theoretical methods developed for the calculation of
electron impact excitation rate coefficients of positive
ions and to make a compilation useful to astronomers. It
was soon realized, however, that this could not be done
within the format of a conference talk and thus it was
divided into two parts: Part I, which is hereby presented,
will mainly deal with the theoretical methods, illustrated
with recent results; in Part II we will review the different
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computational approaches and make a compilation of
rate coefficients. Part Il will be submitted to the present
journal for publication as a separate paper.

II. THE EXCITATION RATE COEFFICIENT

The process of excitation (or de-excitation) of an ion
by electron impact is described in terms of the cross
section

Q- = o id mh . @D

where w; is the statistical weight of the initial level, k* (i)
is the energy of the incident electron relative to the ith
level in units of Rydberg, and €(i,j) is a dimensionless
quantity referred to as the collision strength. A more
useful quantity, particularly in astrophysical processes, is
the rate coefficient

q(i—j;T,) = on QG =j) v f(vi, Tdv; ,  (22)

that is, the cross section averaged over a Maxwellian
electron velocity distribution f(v;,T ). The number of
transitions per second from a level i to a level j is then
given by :

dj; = Nga(i=j) . (2.3)

where N, is the electron density.

285



.6..285M

1981RMKAA. .

286 . C. MENDOZA

For collisional de-excitation the rate coefficient in
cm® 57! can be expressed by

8.63X10751(¢,

i, T.) . .
o T ) i>d) , 249
) e

a6 ~iT,) =
where
TG T,) = f G,
:
X exp (KEIT) G DT, . @)

Te is the electron temperature in K and x is the
Boltzmann constant. The excitation rate coefficient can
be obtained from the detailed balance relation

ai~i) = = qf~i)

X exp (—(Ej—E)/kT,) » G>1) .  (2:6)

Most theoretical work is concerned with the quantum
mechanical calculation of the effective collision strength
T(G,i;Te). If the energy variation of £j,i) can be
neglected (j,i) = (ij), but for a large number of ions
of astrophysical interest, particularly at low energies, the
collision strength is dominated by complicated series of
resonances which arise from quasi-bound states of the
ion plus electron system. To be able to reproduce their
effects and properties a detailed knowledge of the ionic
structure and the equations that describe the collision is
not only necessary, but the computations are large,
modestly accurate and costly. In many cases approxi-
mate analytic approaches such as Quantum Defect
Theory and semi-empirical model potential methods
provide invaluable help in otherwise unaffordable cal-
culations.

ITII. THE COLLISION PROCESS

In order to obtain expressions for the excitation cross
section the colliding electron wave is linearly expanded
in partial waves of definite angular momentum, the
Schrodinger equation is solved for the ion-electron
system, and from the asymptotic form of each outgoing
electron wave a partial cross section can be estimated.
The total cross section is obtained by adding up these
partial contributions, and the convergence of the infinite
partial wave expansion depends on the nature of the
transition: for forbidden transitions it is relatively fast
but for allowed transitions it can be very slow indeed.
For electron collisions with light ions at low energies
relativistic effects can be neglected and, consequently,
the total spin and orbital angular momenta are sepa-
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rately conserved and LS coupling can be assumed; parity
is also conserved. The usual procedure then is to couple
the electron and target angular momenta, and to solve
the Schrodinger equation for intermediate states of the
total system defined by the quantum numbers SLx. If
cross sections between fine-structure levels are required
algebraic transformations to intermediate coupling can
be made, neglecting relativistic corrections in the Hamil-
tonian and fine-structure splittings in the target. For
electron collisions with heavier ions (Z>20) this
approach begins to break down and relativistic effects
must be somehow included.

a) Expansion of the Wave Function

If we assume that the eigenfunctions of a N-electron
ion form a complete orthonormal set, the wave function
for the (N + 1)-electron system can be linearly expanded
in terms the ion (the target) eigenfunctions (Burke and
Seaton 1971)

Y(SLa) = D of X;(T3S;LMgMy 5112, ..., N)

1

X 0;mgimgIN+1) , (3.1)

where X; are the target eigenfunctions specified by the
set of quantum numbers {I';S;L;Mg;My ; }; the expansion
coefficients 6; depend on the incident electron coordi-
nates and take the familiar form

oi(QiinmsilN + l) =6 (msi; 0N+ 1) YQ

imgj

F.
(N 1) ———f;‘i*l D gy

where § is a spin function,

Yoimi;

is the spherical harmonic, and F; is the electron radial
function. & is an antisymmetrising (¥ must obey the
exclusion principle) vector-coupling operator which gives
intermediate states of the total system with quantum
numbers SL.

The electron radial functions F;(r) are obtained from

‘the solutions of the Schrodinger equation for the total

system

Hyy1 W = EV (33)
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here HN is the non-relativistic Hamiltonian and E
le total energy.

b) Boundary Conditions and Linear
Independence of the Solutions

Since we have assumed the x; to be eigenfunctions of
physical system, the boundary conditions satisfied
7/ ¥ and the number of linear independent solutions of
e Schrodinger equation (3.3) are determined by the
»undary conditions imposed on Fj(r). Furthermore, the
tter depend on the energy regime under consideration.

For an intermediate state SLm every term in the
‘pansion (3.1) gives rise to and interaction channel. If
2 define the channel energy in Ryd to be

K*@)=E-E , (3.4)

1ere E; is the corresponding target energy, the channel
1l lead to scattering if k(i) >0 and it is said to be
en. Otherwise it is energetically closed (k?(i)< 0).
1e number of linear independent solutions ;' of (3.3)
easily shown to be equal to the number of open
annels NCHOP.

As (1/r)F;;:(r) must be bound for all r, the behaviour
the origin is given by

Fii'(®) > 0 asr > 0  (all channels) . (3.5)

ere the second subscript i', denotes a specific linear
lependent solution.) The asymptotic behaviour of the
ctron functions depends on whether the channel is

en or closed: for a closed channel F;’ has the.

und-state function behaviour
Fiiy 1) = 0 as r > o (closed channels); (3.6)

-open channel function has the asymptotic oscillatory
1aviour

') ~ k2
X {sin (§i+7i)‘6ii’ + COS(§i+Ti) Rii'} , (3.7)

alternatively,

'(l') ~n k1-1/2 {e—i(i’i + 79 8ii’

—e*i“‘i* 7i) Sﬁ’} . (3.8)

s the Coulomb phase
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$i = k() -—% Gm + (z/k(i) ) 1n2k (i) 1)
+ag P +1—iz/k()) , (39)

where z=Z—N and 7; is an arbitrary phase chosen for
convenience. R is referred to as the reactance matrix and
it is real and symmetric. S is the scattering matrix and is
symmetric and unitary in order to conserve flux; it can
be expressed in terms of the R matrix by

S=(1 +iR)(1 _ iR)™ . (3.10)

The collision strength is given by

QUSLLTy S L) = 5 9 9 @S+DEL+1)
QR SLw

X |T@SLe, TSy Ls L), @41

where

T=1-8§ . (3.12)

Finally, a further situation arises which is when all
channels are closed. In this case all boundary conditions
are rigidly specified and the problem reduces to an
eigenvalue problem, that is, the conditions can only be
satisfied by certain values of E which correspond to the
eigenenergies of the (N + 1)-electron system (Eissner
and Seaton 1972). This is important in the sense that the
same theoretical formalism and numerical method can
be used to study both the discrete spectrum and the
continuum. Also, the equations to be solved have some
computational advantages compared with the Hartree-
Fock equations used in atomic structure calculations.

IV. COMPUTATIONAL APPROACH
a) Truncation of the Expansion

The summation in (3.1) is over an infinite number of
bound states and includes the continuum, but in practice
the expansion must be truncated. The new finite
expansion

NCHF

D & %0, @1)

i=1

Jce =

is referred to as the close-coupling expansion. Moreover,
exact solutions of the Schrodinger equation can no
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longer be obtained and a new approach must be
introduced, namely the variational principle.

It can be shown that for small variations about the
exact solution

8 {(WilH-Elyi) — R’} = (- ¥ilH-EI8 yy) ; (42)

or, conversely, for a trial (t) function the exact R matrix
is given by

RO = RY, — (y;IH-E| ;)
+ (8 Y;H-EIs ;).  (4.3)

The Kohn corrected R matrix is defined as

RK = RL - WiIH-Elyy) (44

11
and differs from the exact R matrix by a quantity of

quadratic order in & . If we impose on the close-
coupling (CC) expansion the condition

@Gyl H-Elyic =0 4.5)

for all variations 8y, then (y;IH—E| ¥;)°“=0 and,
hence,

R‘.l'i’ﬁact= RSH + (By;IH-EIsy;) , (4.6)

that is, the R matrix in the close-coupling method differs
from the exact value by a quantity of second order in
the order of 6 Y. The equations for F(r) are now
obtained from the variational condition (4.5).

b) Bound Channels

Every term in the expansion (4.1) gives rise to a free

channel since they contain the radial functions F.(r) .

which are varied freely so as to satisfy (4.5) and, as we
have seen, they can be open or closed. In order to define
the Fi(r) uniquely (Burke and Seaton 1971) the follow-
ing orthogonality conditions are imposed

(PyIF) =0 (Q,Y = Qi) , 4.7
where the P_ are the target orbitals, without constrain-
ing the total wave function W if a suitable linear
combination of the functions ®. are included in the
expansion. They are built up from target orbitals and
take the form of bound-state functions of the (N + 1)-

electron system. They are referred to as the bounc
channels (Eissner and Seaton 1972).

The orthogonality conditions are incorporated in thi
variational formalism by the technique of Lagrang
multipliers:

@ ;| H-E ly;) +Z>\i7(8FiIP7) =0, (48

by

and the CC expansion now takes the form

Pee = Z o Xib; + Z Be; - (4

i=1 i=1

Furthermore, the expansion coefficients c; are treate
as variational parameters:

0
— (YIH=Ely) =0 . (4.10
acj

¢) Target Wave Functions

It should be noted that in the formulation of th
variational principle exact eigenfunctions have bee
assumed for the target. In practice, for many-electro
ions, only approximate wave functions can be use
introducing errors in the R matrix of first order in th
error of the functions. Consequently, it is important ti
employ accurate wave functions, and for most ions it i
necessary to consider electron correlation effects (con
figuration interaction), that is, the wave function for
state cannot be approximated by a single configuratio:
I"., but is taken to be a linear combination of correlatio:
configurations of the form

x, (CS,Lm) = Z a_¢ (" SLm). (411

1111 m m- m111
m

d) Approximate Solutions of
the Scattering Equations

i) The close-coupling approximation.

Equations (4.7), (48) and (4.10) lead to a set of cou
pled integro-differential equations for Fi(r), ¢j and Ay 0
the form

(hl_k2 (1))F1 + Z WiilFi' + Z Uij'cj'

1 J

F 2 AP =0, (412
¥ 1y v

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



.6..285M

1981RMKAA. .

ELECTRON IMPACT EXCITATION 289

1

(FylUgg) + 3 (3 5 — Eddy =0, (413)
, =

(PylFi) = 6,27 Qi > (4.14)
where
d? (¢ +1) 2Z
h1 = F ——_z—r — s (4 15)
and

The second term of (4.12) represents the coupling
potential (direct and exchange) of the particle in all free
channels i’ with the target in state i. Similarly, the third
term represents the interaction between the particle in
all bound channels j’ with the target in state i.

In the CC approximation the coupled equations are
solved numerically for a small number of target terms.
The number depends on the system in question and the
energy regime under consideration.

ii) The Distorted Wave method.

In this approximation the inter-channel coupling is
assumed to be weak which is the case for highly ionized
systems (z > 3). It can also be used to calculate contri-
butions from high partial waves. The electron radial
functions are solutions of the equation

;- K>V + wy PV =0 . 417)

iii) The Coulomb-Born approximation.
The electron radial functions are taken to be solu-
ions of the Coulomb equation

2 LA +1
- _z__‘(; ) 4 ZremitP =0 . 4.18)
The approximation is usually used for high partial
vaves in optical transitions where the convergence is
llow.

V. PROBLEMS IN SCATTERING CALCULATIONS
a) Resonances
It is well known that in a variety of low energy

ontinuum  processes (e.g. photoionization, electron
mpact excitation, etc.) the phenomenon of resonances
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takes place, that is, at some energies the scattered
electron forms quasi-bound states with the target ion.
This type of resonance has been observed experimentally
in techniques such as UV absorption and electron
spectroscopy of metallic vapours, especially the alkaline
earths (Mehlman-Balloffet and Esteva 1969; Rassi et al
1977). The theoretical approach to this phenomenon has
received a great deal of attention (Burke 1968; Seaton
1969a).

In the calculation of excitation rate coefficients
resonances must be considered as they can cause drastic
changes to the cross section. In the formalism of the
coupled equations resonances arise from the coupling of
the open channels with closed channels and/or bound
channels. If this coupling did not take place the electron
would couple with the target states to give either infinite
series of doubly excited bound states converging to the
target terms or pure continuum states. In practice the
double excitation acquires some of the character of the
free state; it broadens and there is a finite probability,
which depends on the coupling, for a radiationless
transition into the continuum. This phenomenon is
called autoionization.

In the calculation of the excitation cross section one
must try to include the target terms which give rise to
resonances in the region of interest, and this becomes
more intractable as one works up the isoelectronic
sequence. For instance, for transitions within the same
complex (An=0), the energy difference between the
target terms AE“(Z) in the sequence scales with z
whereas the position of the resonances scales with
z*> and, consequently, the resonances are pulled in
as z becomes larger. This effect can be appre-
ciated in the electron impact excitation of the
2s? 2p? 3P — 2s? 2p? ' D forbidden transition in the car-
bon isoelectronic sequence (Figure 1). We consider the
intermediate state 2D° which gives the largest contribu-
tion to the cross section. It can be seen that for N II the
resonances converging to the excited target term
2s2p® *D° appear fairly high and, hence, they will not
contribute appreciably to the excitation rate coefficient
for electron temperatures below 20000°K. On the other
hand, for O III the partial cross section is dominated by
the broad 2s2p3(°D°)3s resonance. For NeV this
resonance has gone below threshold, and resonances
converging to higher thresholds begin to appear. Also
their widths become narrower as z increases, but in no
way they can be neglected in an accurate calculation.

b) Correlation Effects

One of the main problems in the close-coupling
method is to be able to represent the distortion, whether
long-range or short-range, of the target states by the
incoming electron. These effects are unavoidable in an
accurate description of the collision process, and there
have been several approaches to incorporate them within
the CC framework.
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Fig. 1. Partial collision strength of the 2D° intermediate state for the 2s?2p? P — ! D transition in the carbon-like sequence showing
the resonance structure. N II by Saraph and Seaton (1974); O III by Eissner and Seaton (1974); and Ne V by Giles et al. (1979).

One way of approximating the long-range distortion
or polarization of the target states by the incident
electron is by the method of polarized pseudo-states
developed by Damburg and Karule (1967), Burke et al.
(1969), Feautrier et al (1971) and Vo Ky Lan (1971).
The 2/-pole polarizability of an atomic state xo is given
in atomic units by

(g [V Ixo)I?
A=2 XXl
% Z Ey - Eq .1)
k>0

where

N

V== i RGost) . (2

i=1

and the summation in (5.1) includes the continuum. In
this method the summation in (5.1) is replaced by a
single term

e
g\ = 2 —E AT (5.3)
E, — Eq
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The polarized pseudo-states X_ are included in the
first expansion of (4.9) to accouht for the full 2}‘-pole
polarizability of the spectroscopic target states. A
problem that appears in this method, however, is that
pseudo-states give rise to non-physical thresholds and
pseudo-resonances, and the final cross sections must be
obtained by somehow averaging over these resonances.

In a similar manner additional bound channels or
correlation functions can be included in (4.9) to account
for short-range correlation effects (Burke and Taylor
1966). These functions usually contain pseudo-orbitals
generated by optimizing target energy separations.

An alternative approach is to approximate the target
distortion by analytic model potentials. For instance,
Seaton and Steenman-Clark (1977) showed that the
dipole distortion of the 1s state of hydrogen can be
represented by a model potential with asymptotic form

o N (68 + 24,k?(Is))

r# ré

V- (5.4)

where « is the dipole polarizability of the 1s state, and
the parameters § and 7y can be obtained from f-value
estimates. Model potentials usually contain empirical
parameters which are adjusted to reproduce experimen-
tal data and have been widely used in atomic calcula-
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ons of simple systems (Laughlin and Victor 1973;
'orcross and Seaton 1976; Mendoza 1981a).

At intermediate energies, that is at energies several
mes the threshold value, the problem becomes more
>mplicated: there are too many channels to include in
1e CC expansion and the inter-channel coupling is still
rong and cannot be neglected. There have been several
ttempts to account for neglected open channels based
n the pseudo-states method (Burke and Mitchell 1973),
ut again the presence of pseudo-resonances brings in
ifficulties. Recently, some progress has been made at
itermediate energies using a new method based on a L?
iscretization of the continuum (Reinhardt 1979) from
'hich scattering information can be extracted (Berring-
n et al. 1981).

¢) Relativistic Effects

Relativistic effects in electron-ion collisions have been
iscussed by Walker (1974) and Jones (1975). The way
1 which they have been included in computational work
an be summarized as follows:

i) When the relativistic effects are small and the
ne-structure energy splittings in the target can be
eglected, it is possible to obtain expressions for the
xcitation cross section between fine-structure levels
sing algebraic transformations, from LS coupling to
itermediate coupling, for the R matrix (Saraph 1972).
hey are of the form

RI™(IS;,LJ#K, Iy S; Ly Ty 2'K")

= D C(SLESLT; K)
LS

LSL"(PiSiLiQS,Fi'Si'Li'Q,S,)C(SU; Si' Li'Ji' ,Q':K’) s (5 5)
'here C are algebraic recoupling coefficients and
i tL=3,) +28=K and K +s=1J; (5.6)

is the total angular momentum of the new interme-
iate state Jm.

If relativistic effects cannot be neglected in the target
1ey can still be treated as perturbations, the target
amiltonian re-diagonalized in intermediate coupling to
btain term coupling coefficients, and the expressions
st RI™ are now obtained in terms of RSL™ and these
sefficients.

ii) For intermediate weight ions (Z > 20) relativistic
fects in the target and in the collision process begin to
10w up in such a manner that they cannot be neglected.
hey can be treated by a perturbative Breit-Pauli
lethod (Jones 1975) which has been recently incorpo-
ited in the close-coupling formalism by Scott and
urke (1981).
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iii) For very heavy ions the only satisfactory ap-
proach is based on solutions of the Dirac equation
(Walker 1974).

VI. QUANTUM DEFECT THEORY

The complexity and cost of formal atomic calcula-
tions, and the frequent unavailability of large enough
computers have encouraged the development of alter-
native analytic methods to approximate some of the
problems for which there has been urgent need. Quan-
tum Defect Theory (QDT), developed by Seaton and
collaborators (Seaton 1970), is one of such methods and
is at present widely used in the analysis of the data
obtained from close-coupling computations.

The mathematical formalism of QDT is based on the
analytic properties of the solutions of the Coulomb
equation. The coupled equations of the scattering
problem take the general form in matrix notation

d? Qe +1 2
e+n 2z

dr? r? r

+eF+WF=0 . (61)

For a positive ion the asymptotic potential is domi-
nated by the Coulomb term and no essential error arises

-by assuming that

W, () =0 for r > 1o , (6.2)
where 1o is finite. Consequently, for r >r,, F can be
expanded in terms of the analytic solutions of the
Coulomb equation f(elr) and g(elr)

F (elr) = f(elr) I(e) + g(elr) I(e) . (6.3)

Furthermore, it has been shown (Ham 1955) that,
assuming certain continuity conditions near the origin,
F(elr) is an entire analytic function of € for all finite
values of r and, hence I and J, which contain the expan-
sion coefficients, will also be analytic functions of € and
can be represented by convergent expansions.

If we consider a region with all channels open we can
define a matrix R such that

F~ k™ {(sint) + (CosHR}, 1>19  (6.4)

and a matrix X=(1+iR)1-iR)™. R and X are
slowly varying functions of energy and, with the above
approximation, we can define the analytic continuations
of R and X for all finite values of the energy, and
develop extrapolation and interpolation expressions for
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scattering parameters in terms of these analytic con-
tinuations. For instance, in the region of some channels
closed R can be partitioned according to the scheme

R= [Roo "‘oc)

. 0 = open (65)
Reo  Ree

¢ = closed

and the reactance matrix R can be expressed in this
region by (Seaton 1969b)

R=R,,— Roc { R + tan myg F' Reo » (66)

where

k* (¢) = —2* v’ 6.7)
Similarly, the S matrix is given by

S =Xgo — Xgeo {Xee — exp(=2miw ) ' Xeo (6.8)

The resonance structure which characterises this
region is contained in the second term of (6.6) or (6.8).
Another useful quantity is the collision strength
averaged over resonances in the region just below
threshold, referred to as the Gailitis average. It has been
shown by Seaton (1969b) that for one closed channel ¢

Xl 6

S 2= |y |2 +
{| ii I |Xn | ? GCi"lz

and that it is discontinous across the threshold for ne
transitions (Gailitis jump).

In Figure 2 we illustrate some of these features i
connection again with the 2s22p® 3P —2s22p* 1
transition in the carbon-like sequence for the 2P
intermediate state of the total system. In contrast wil
the 2D° intermediate state (Figure 1), the 'S thresho!
now gives rise to a free channel which below threshol
produces resonances of the type 2s22p>(*S)np ar
above threshold leads to the new transitic
25?2p? 3P — 25?2p? !S. The high (* S)np resonances a:
obtained by extrapolation from above threshold usir
QDT expressions, and it is seen that the agreement wit
the close-coupling values is very good. Also, the Gailit
average is shown to be discontinuous across the 'S ar
3D° thresholds and this is a direct consequence ¢
conservation of flux. Even in the case of Ne V, whe
there is a resonance sitting at threshold, it is still possib
to implement this approach. Above the ' S threshold t}
QDT formulae are used to interpolate the CC values ar
thus obtain a complete description of the cross sectic
in the region of interest.
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Fig. 2. Partial collision strength of the ?P° intermediate state for the 2s*>2p? *P — ' D transition in the carbon-like sequence showi
some of the QDT features. N II by Saraph and Seaton (1974). O III by Eissner and Seaton (1974) and Ne V by Giles et al. (1979); fill
circles, CC approximation; solid lines QDT fit; broken line Gailitis average.
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VII. SELECTED RESULTS
a) The Lithium Isoelectronic Sequence

It is convenient to start the discussion of results with
the lithium-like sequence as there are extensive calcula-
tions in different approximations and accurate experi-
mental measurements which bring out the main features
encountered in scattering problems.

Transitions in the lithium isoelectronic sequence are
used in temperature diagnostics in the solar corona
(Heroux 1964). The level spacings in the 1s22s — 15*2p
and 1s%2s — 1s23p transitions make the ratio
R = q(2s — 2p)/q(2s — 3p) temperature dependent.
Moreover, at low densities (Saraph and Seaton 1970)

R = I2s—2p)/I(2s—3p) , (7.1)

where I(2s — np) is the line intensity of radiation. Thus
from a knowledge of the line-intensity ratio and R the
plasma temperature can be estimated.

- Be* c3+ NL+ -
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Fig. 3. Energy level structure of Be II, CIV and N V in units of
the 2s — 2p excitation energy.

In Figure 3 we show the energy level structure of
BeIl, CIV and N V. The relative spacing between the
n=2 and n= 3 levels increases along the sequence and,
consequently, the effect of the coupling with higher
thresholds on the cross section of the 2s — 2p transition
is expected to decrease with z. On the other hand, for
the 2s— 3p transition this coupling will always be
important.

In Figure 4 we show the calculated and experimental
cross sections for the 2s — 2p transition for these ions.
The main features can be summarized as follows:

i) The excitation cross section for Be* +e”; has

been calculated in a variety of approximations. It can be
seen that the Coulomb-Born approximation grossly
overestimates the cross section near threshold but
converges to the experimental limit at high energies.
Unitarization of the S matrix and exchange are also
important, and they are found to lower the cross section
in the low energy region. Also, as the contribution to the
cross section for intermediate states with L<3 is
relatively small for this transition the unitarized Cou-
lomb-Born approximation with exchange gives reason-
able results. The close-coupling method gives fairly good
results at low energies, but even a S-state (5CC)
approximation gives results which are 20% above experi-
ment suggesting slow convergence of the CC expansion.

ii) The agreement with experiment for the higher
members of the sequence is much better: for C IV a 5CC
approximation and for N V a 2CC are sufficient to give
satisfactory agreement with experiment. In fact, for the
latter case, the distorted wave, Coulomb-Born and CC
results are in 10% agreement (results not shown).

iii) A usual feature found in experimental measure-
ments is that the threshold for a transition is not sharp
due to the energy distribution of the electron beam. If
theoretical values are averaged over the electron beam
energy distribution, and in the case of NV ithasa FWHM
of v 3eV, the agreement with the experimental trend is
greatly improved.

b) The Beryllium Isoelectronic Sequence

Transitions in the n =2 complex of ions in the Be-like
sequence are observed in a variety of astronomical
objects. However, astrophysical interpretations from
these transitions (e.g. in the upper atmosphere of the
sun) are sensitive to small errors (25%) in the atomic
data, and a great deal of effort has been given to obtain
rate coefficients for these transitions to an accuracy
better than 10%.

Firstly, it is found that the target wave functions are
sensitive to configuration interaction, and correlation
configurations containing 3% and 42 pseudo-orbitals
must be included to reproduce the experimental term
energy separations and f-values to v 2%. Secondly, the
cross section at low energies is dominated by resonances
converging to the 2% thresholds, and at higher tempera-
tures (> 10000°K) the rate coefficients are also sensitive
to resonances converging to the 2s3% thresholds. Calcula-
tions have been carried out by Berrington et al (1977,
1979) for C III in a 6CC approximation, for O V in 6CC
and 12CC, and by Dufton et al. (1979) for Ne VII in a
6CC approximation. These calculations also include
correlation functions for the (N + 1)-electron system
which make some allowance for neglected thresholds.

In Figure 5 we show the results for the
15225 1S — 15?252p 3P° and 1s?2s® 'S — 1522s2p!' PP
transitions in OV in 6CC and 12CC approximations.
Below the resonances converging to the n = 3 thresholds
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ig. 5. Total collision strength for the ! S — *P° and 'S — ' P° transitions in O V by Berrington ef al. (1977, 1979). Solid curve, 12CC;

ashed curve, 6CC.

he 6CC and 12CC results are in good agreement, but in
he resonance region the collision strength for the
S — 3P° isincreased on average by a factor of 2 and for
he 'S — 'P° by  10%. This difference in contributions
; due to the fact that for the 'S — 3P° transition, being
pin-forbidden, the convergence of the CC expansion is
uite fast and the main contributions come from the
>wer partial waves where resonances dominate. On the
ther hand, the 'S — 'P°® is an allowed transition and
he convergence is much slower and contributions to the
ross section come from higher partial waves where
esonances are less important. These new results have
een used to resolve outstanding discrepancies in the
aterpretation of observations in the upper solar atmo-
phere (Dufton et al. 1978, 1979).
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) 2p Isoelectronic Sequences

Transitions in ions with ground configuration
2p4(q=1,2,3,4,5) play an important role in a wide
range of astrophysical problems. For example, the
analysis of the forbidden transitions within the ground
configuration of such ions (q =2,3,4,5) provides reliable
estimates of the electron temperature and density and
abundances in gaseous nebulae. Also, the semi-forbidden
and allowed transitions between levels in the n =2 and
n=3 complexes are used in the interpretation of
observations from quasars, the solar corona and hot
stars. In many cases the electron impact excitation rate
coefficients for the lower members of the sequences are
dominated by resonances, and detailed close-coupling
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calculations have been carried out attaining accuracies of
10% — 20%. For the higher members the Distorted Wave
method has been widely used, and results are quoted to
be accurate to better than 50%.

Here we will only discuss an interesting technique
developed by Pradhan (1976) to calculate the cross
section for the 2s2p> 2DY;, — 2s*2p® 2D3, fine-
structure transition in O II. Fine-structure transitions
within the np® ground configuration are used in electron
density estimates in nebulae. He uses a SCC approxima-
tion and the algebraic method by Saraph (1972) (section
5.3) to obtain cross sections for these transitions
neglecting relativistic effects and fine-structure energy
splitting in the target. However, the cross section for the
above transition is populated by resonances converging
to the 2s22p® 2P® threshold which in intermediate
coupling mix strongly to give a complicated pattern. He
makes use of an extrapolation method based on QDT
which gives impressive results (Figure 6).

2
- Dy,

2 (%05,

30 35 40 45

Fig. 6 Total collision strength by Pradhan (1976) for the
’Dg;, — *Dj,, transition in O II as a function of the effective
quantum number at energies just above the 2D° threshold.
Dashed curve, Gailitis average.

RSL™ in LS coupling are calculated at a few points
above the 2P° threshold, where they are slowly varying
with energy, and they are fitted to low order poly-
nomials. They are then extrapolated below threshold
with the QDT formula (6.6) to two points corresponding
to »=3.0 and »=40, where k*(*P°)=—1/»* (Fig-
ure 6). The extrapolated RSL™ at these two points are
now transformed to intermediate coupling (RI™) using
the relation (5.5), and the slowly varying x"'" matrices
are calculated with ' ‘

x‘ﬂ - (1 + IRJ")(I _ iRJw)-l . (71)

The XJ” matrices calculated at »=3.0 are used to
obtain collision strengths with the QDT formula (6.8)
between v=»; and »=3.5, and those calculated at
v =4,0 are used to obtain collision strengths in the range

v=3.5 and v=4.5. For v>4.5 the resonances are
closely spaced and the Gailitis average may be imple-
mented. Thus he is able to obtain a complete description
of the cross section in this difficult region and calculate
the effective collision strength 1'(3/2,5/2; T,) for this
transition.

d) The Sodium Isoelectronic Sequence

As an example of calculations done for ions in this
sequence we will mention the results by Mendoza
(1981b) on the electron impact excitation of the
3s — 3p transition of Mg II (Figure 7).

25

N
o

N (3s-3p)

15

[4s 2S)

[3d201 l4p®P°)
| Iﬂ . ll-
0 01 02 03 04 05
[k(3p2P )1

Fig. 7. Total collision strenght for the 3s — 3p transition in
Mg II. Solid line, 4CC by Mendoza (1981b); dot-dashed line,
3CC by Burke and Moores (1968); dashed line; CB by Blaha
(1972); crosses DW by Kennedy et al. (1978); filled circles,
experiment by Zapesochnyi et al. (1975).

A 4CC (3s, 3p, 3d, 4s) approximation is used, and the
distortion of the 2p® core by the two outer electrons is
approximated by semi-empirical model polarization
potentials which include a term to account for the
valence-valence interaction by the polarized core (dielec-
tronic polarization, Norcross and Seaton 1976). The
special feature of his method is that the nf wave
functions of Mg* are calculated by considering the
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Ag** + e~ system in a single closed channel representa-
ion (i.e. an eigenvalue problem), and adjusting the
mpirical parameters of the polarization potential to fit
he spectral series of Mg*. Thus these orbitals are
xpected to be more accurate than those obtained by
he usual atomic structure methods. Results are com-
vared with experiment and other theoretical results in
‘igure 7. Again, as the 3s — 3p is an allowed transition
nd the convergence of the partial wave expansion is
low, the agreement with simpler approximations, e.g.
he Distorted Wave and unitarized Coulomb-Born with
xchange, is fairly good.

e) The Second Row Sequences

Recently there have been some attempts to extend
he close-coupling approach used with considerable
uccess for first-row ions to the larger ions of the second
ow of the periodic table. The target term structures
how many similarities, but the open n = 3 shell and the
ncreased atomic radius make the problem much more
ifficult.

Following Layzer (1959) all configurations in the
ame complex must be included in the description of the
arget wave functions and this implies that a large
umber of configurations must be taken into account.
iven so, the term energy separations and f-values are

generally poor and correlation configurations containing
42 and sometimes 5% pseudo-orbitals must be consider-
ed. For forbidden and semi-forbidden transitions in the
first-row ions the contributions to the cross section from
channels containing f and g waves are smatl and can be
calculated with the Distorted Wave or Coulomb-Born
approximations, and in some cases neglected. This is not
the situation for the larger ions where it is usually
necessary to include these channels explicity in the CC
expansion.

There are two recent detailed CC calculations by
Baluja et al. (1980) on the 3s> 'S —3s3P 3P? transition
in SiIll and by Dufton and Kingston (1980) on the
3s*3p 2P° — 3s3p? *P transition in SIV. In both of
these cases accurate target functions and the resonance
contribution to the cross section play a dominant role.
In the former calculation it is found that the effective
collision strength at SO000°K is larger by a factor of six
compared with earlier DW results; even at high tempera-
tures (25 X 10* °K) it is larger by a factor of 2. A similar
situation is found in the S IV calculation.

The author is at the moment involved in an extensive
study of the forbidden transitions for ions in the
silicon and phosphorus isoelectronic sequences. In
Figure 8 we illustrate a problem encountered in the
calculation of the cross section for the transition
3s23p® 3P — 35?3p® ' D of S III. There are large shifts in

T T T T T T T
120 - ]
SsLmw=2G°
100 — -
('D°)3d
('D°)ad
80 |-
~ . -
P 6-0
]
o - (°0°)ad
= 30°)3d
c (0°)
4-0 —
20
(°0°)sd
] | | | ]
1] 01 02 03 0-4 05 06 07
[k(D))?

ig. 8. Partial collision strenght of the 2G° intermediate state for the 3s?3p? *P — !D transition in S III showing the shift in the
osition of the 3d resonances caused by including correlation for the excited configurations. Dots, without correlation; open circles, with

orrelation.

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



.6..285M

1981RMKAA. .

298 C. MENDOZA

the position of the 3d resonances when configurations in
the n =3 complex which correlate with the excited odd
configurations are included. There are also shifts when
channels containing g waves are neglected. The other
resonances are only slightly affected.

f) Heavier Ions

The problems encountered in the calculation of
excitation cross sections for heavy ions are innumerable,
some of them intractable with present computational
methods and facilities: open shells, large number of
close-lying levels leading to strong correlation effects in
the target and in the close-coupling expansion for the
(N + 1)-electron system, relativistic effects in the target
and in the collision process, complicated resonance
structure and poor experimental measurements. We
illustrate the way in which these problems have been
tackled with a recent calculation by Nussbaumer and
Storey (1980) on atomic data for the astrophysically
important Fe II. There is hardly any astronomical object
which does not show lines of Fe II in its spectrum and
the atomic data are very poor indeed.

Fe II has 25 electrons, 7 of which are in open shells.
The lowest 4 configurations 3d®4s, 3d7, 3d°4s®> and

TABLE 1

OBSERVED AND CALCULATED TERM
ENERGIES OF Fe Il (cm™)2

State Observ. Calc.
3d%4s°D 0 0
3d” 4F 2003 34879
3d%4s*D 7904 9521
347 4P 13196 52248
3d%4p ¢D° 38294 35091

6 F° 41754 38690
s pe 42649 40689

fine-structure:

3d°4s°D, 0 0
¢D, /’z 385 391
°Dy ). 668 684
‘D, 863 888
D, /i 977 1009
3d7  4F 0 0
‘F, f’ 567 662
IR, /: 965 1152
‘F,)n 1245 1490
3d%4p ‘SD“,’/z 0 0
S 201 257
6D‘;ﬁ 400 479
‘D% 554 647
DY), 650 750

a. Results by Nussbaumer and Storey (1980).
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3d%4p give rise to 116 terms and 299 fine-structure
levels. They calculate energy levels and transition prob-
abilities for allowd and forbidden transitions with
the atomic structure program SUPERSTRUCTURE Eis-
ner et al. 1974). They restrict the configuration basis and
consequently, some of the term energies are very poor
(Table 1), in particular the 3d7 *F. This term is greatly
improved if the 3d®4d configuration is included. Ex-
perimental f-values for allowed transitions show large
discrepancies (v factor of 2) among themselves to
provide a guide to the accuracy of their calculated
values. However, their calculated transition probabilities
for the forbidden transitions are in reasonable agreement
with the semi-empirical results by Garstang (1962): for
transitions within the ground term it is better than 10%;
for the strong transitions to higher levels it is in general
better than 20%, but there are large discrepancies for the
feebler ones.

They also calculate collision strengths for all the
fine-structure transitions of the lowest four terms. The
close-coupling expansion is generated in the two-
configuration basis 3d®4s, 3d” and limited to the 4
terms °D, *F, *D and *P, and electron partial waves
with 2<3. Collision strengths are calculated in LS
coupling at three energies thus neglecting resonances,
and the fine-structure cross sections are obtained by the
algebraic method of Saraph (1972) neglecting relativistic
effects and fine-structure in the target which for Fe II is
not really valid. They find that the contribution to the
cross section from partial waves with £ > 3 is small and
can be ignored, and the largest errors arise from
neglecting resonances and from using poor target wave
functions, an uncertainty of 50% is quoted. A more
ambitious calculation, based on the Breit-Pauli treat-
ment, is at the moment being prepared by the group at
the Queen’s University of Belfast.

I would like to thank Professor M.J. Seaton for
encouraging me to give this talk. A research grant from
the Science Research Council of Great Britain is ac-
knowledged.
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