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RESUMEN

Se ha aplicado el teorema virial tensorial a un sistema inicialmente oblato y sin colisiones, para
estudiar el cambio de sus configuraciones seculares. Se ha encontrado que el sistema muestra una osci-
lacién entre una forma oblata y prolata. Asimismo se encuentra que el cuadrado del periodo de oscila-
ci6n es inversamente proporcional a la densidad promedio del sistema.

ABSTRACT
We have applied the tensor virial theorem to an initially oblate stellar system without collisions
in order to study the variation of its configuration in time. We find that the system undergoes an oscil-

lation between an oblate and a prolate form. We also find that the square of the oscillation period is
inversely proportional to the average mass-density of the system.
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1. INTRODUCTION

Models for the formation and evolution of elliptical
1d disk galaxies by the collapse of a protogalaxy have
sen proposed and investigated by several authors notably
y Larson (1969, 1974, 1975 and 1976), and by Gott
1d Thuan (1976). Particularly in the discussion of a
10del for the formation of an elliptical galaxy Larson
1975) shows that a completely inviscid collapse does not
ad to a realistic model but, if a plausible turbulent
scosity is assumed to exist, a significant outward trans-
ir of angular momentum during the collapse will take
lace leading thus to configurations which closely resem-
le elliptical galaxies.

In the present paper we undertake a discussion of a
:ry simplified model of a spheroidal galaxy. We assume
1at such a galaxy has already reached the state of an
ssembly of stars and propose to follow its early evolu-
on from there on.

We envision an E galaxy to be an isolated system of
ravitating mass points in which collisions are either neg-
gible or are such that the distribution function in phase-
»ace is invariant in time. The system is assumed to be
utially an oblate spheroid with initial parameters to be
secified later. We discuss in what follows the applica-
on of the tensor virial theorem to study the evolution
f such a spheroid. Chandrasekhar (1972) has discussed
1e problem for a system with a homogeneous distribu-
on of mass points. In the present paper we give a gener-
ization of the problem to the heterogeneous spheroid
nd work out its application to a concrete case.
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II. FORMALISM

The tensor virial theorem can be expressed as follows
by the use of the Boltzmann equation:

d?1,
L spwjvk)dv

1/2

where 1

A\

p is the density of mass points, and &, the potential func-
tion. The integrations are over the volume occupied by
the system.

For a system where the principal axes are along the
coordinate axes the only non-zero components of equa-
tion (1) are along the diagonals of the tensor such as

d?1 P
1/2 3 2kk = j p(v;) dv — S PXy dv
t v v
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Adopting the following notations:

Kex=1/2 Ip(v;) av

v
J od
wkk = — pxk dv
A\ axk
Equation (1) takes the form
d? Ik -
1/2 = 2Ky + Wi - 2
i kk T Wkk

The moment of inertia of the system with respect to
the center of mass of the system is clearly

I= s p(x* +y? +22)dV=1 + 1, +1,, |
v

and the total kinetic energy of the system with respect
to the center of mass is:

K=1/2 jp(v§+v§,+v:) dV=Ky,+ Ky + K,
v

It can also be shown that the potential energy is
W=W,, + Wy, + W,

Summation over the diagonal components gives the
well known virial theorem:

2

d
1/2 =2kK+ W

dt?

We now have the three non-zero components of the
tensorial virial as follows:

d?1
XL = 2Ky + Wiy s
dt?

1/2

2

d IYY =
112 257 = Ky + Wy

d?1
12 =22 =2k, + W

dt? ZZ 7z

If the system has rotational symmetry around the
axis, the first two equations reduce to one which may be
taken to be either in the x or the y direction. From now
on we chose the x-axis to be this direction. Thus we have
the equations:

d21
1225 = 2Ky + Wyy

dt?

dzlZZ
l/zatg_“ =2Kzz"'wzz ’

and @
K=2K,, +K,, ,

W=2W,, +W,, .

We now assume that the total energy is conserved
throughout the evolution. This means that K+ W=E=
constant. This can be also written as follows

2Kyy + Ky =E —2Wyy =W, - (5

III. INITIAL KINEMATIC CONDITIONS

At present it appears quite well established that the
flattened shape of E galaxies is not wholly supported by
rotation and that dispersion of velocities plays a majo:
role in determining the morphology of such systems
This circumstance has to be taken into account in con
structing models for E galaxies. In our approach using
the Tensor Virial Theorem the dispersion of the velocitie
does not enter in the formalism in an explicit manner.
is implicit in the | K, and |K,, tensors.

We adopt the concept of centroids of motion to des
cribe the kinematics of our model. K, and 1K,, wil
include contributions from systematic as well as randon
motions; for | K, the motion of the centroid (systemati
motion) has two components, namely, one due to rota
tion and another due to motion in the radial directios
(expansion or contraction). |K,, also contains randon
motions —dispersion of velocities— around the centroid
In |K,, the motion of the centroid is clearly the compc
nent of the radial motion in the z direction (expansio:
or contraction) only. It also contains the dispersion o
the velocities in the z direction.

We assume that | K, is related to | K,, ; the simples
relation will be adopted, namely, that |K,, =1K,,
Any other relation may also be considered but at presen
we only deal with the case of equality as a first approx
imation since there are no compelling observation:
reasons to the contrary. It should be emphasized tha
the assumption of the equality of the kinetic energy con
ponents does not imply isotropy of the dispersion ¢
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velocities. We further like to point out that the virtue of
the Tensor Virial approach is indeed the circumstance
that one does not need to postulate a dependence of the
dispersion on position in the system. It is the overall
value of the combined velocity components that is
expressed by 1K, and |K,,. Our model therefore does
not exclude the anisotropy in the random motion shown
to exist in elliptical galaxies.

Incidentally, it may be interesting to estimate numeri-
cally the variation of the dispersion of velocities as a
function of direction and distance in our model; but that
will await a future treatment.

We can then write the following

3Kxx =E- 2Wxx - sz ’

and the system of equations now takes the form

d?1,,
12 e 23E—1/3Wyy —2/3W,, ,
(6)

2

d“I
12 7z
/ dt?

=2/3E—4/3W,, +1/3W,,

IV. THE DENSITY LAW

To proceed further we assume that the equidensity
surfaces of the system can be represented by concentric
spheroids and that the density law remains invariant
during the evolution.

We define the non-homogeneity of the system by
adopting the density law given by Schmidt (1965) for
the Galaxy; however, any other law, say a polytropic
density distribution, could also be assumed in which case
it can be shown that the main results of our treatment
would remain unchanged. At present we do not have
sufficient information on the density law in spheroidal
galaxies to adopt a “better” distribution of mass than
that of Schmidt.

Schmidt’s density variation with the distance R from
the center is as follows:

p(R)y=sR™ | R>Rg,;, region2

R}, refers to the semi-major axis of the spheroid of
Schmidt’s model; the values of the parameters p;, q
and s depend on the shape of the configuration. Further,
let Zgpp represent the semi-minor axis of the spheroid.
Roon and zg,y, are convenient parameters to use in fol-
lowing the evolution of the system, and we shall adopt
them as such.
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V. DIFFERENTIAL EQUATIONS IN Rsph AND Zsph

We now make use of the equations derived by Roberts
(1962) to evaluate I, I,,, W,, and W,,. We consider
two values for n, namely,n =4 and n=6.

For n =4 we have:

_ 2
Lx=23KaR], |

1,,=2/3Ka 235, >

4K2GP A*
™ (15)? Rsph .\/l —e?
4K? GB R
A1 —e* A}

(15 Ry,

K is the total mass of the system, G the gravitational
constant, and

a=4/15¢ —1/6
B=8/3¢72 —15/2¢7% +391/42
§=

a4

3
Rsph

a, is the extent of the system in the R direction; we also
have

L V1= o a-ed)
Al = 3 arc sine — 2 )
e e
L 2 2V1=¢ )
Ay=5 ———5— arcsine
e e

The eccentricity of the system is clearly

A _(fsv_hy \
e= .
Rsph

For n =6 we have

_ 2
Ly =13K:i Ry

- 2
IZZ = 1/3 Kl ZSph 5

_ 2559K]G A*
Xx ~ T T
875Ryn o2

2559 K2 G -
"R, VIO M
sph
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where K; denotes now the total mass of the system.

We note that for n =4, when the radius of the enve-
lope tends to infinity, L, and I, are infinite since o > o°.
But the invariance of the density law can still be used by
assuming a homologous evolution; in this case the variable
¢=a, /Rsph will be a constant throughout the evolution
of the system and hence a = constant. However, for the
general case the equations should be treated without the
restrictive assumption of homologous evolution.

The differential equations giving Rgpn (1) and zg,p (D)
for the two values of n are now:

(@n=4 ®

2
—-{ i fre @]} ,
. 1 .2 1 2K? G
Zsph = Zon {— Zph t —I-(:[E + m(ﬁ(e)]} .
(b) n=6
f‘sh= 1 _th+i[2E+2559KfG w(e):”’
PP R UK, 8575 Ryppy

sph

; 1 ] 1 2559K* G

7o = = P+ — 2B+ S 4(e) |} ;
P Zsph K,

8575 Ropp,
where
Y(e)=— +241—e* A},
V1 —e?
4A*
oe) = ! — /1 -—¢e* A}
V1 —¢?

Zsp h

Sincee= [ 1 —( >2 we have a pair of simultane-
xph

ous equations which have to be solved for R, (t) and

zsph (t).

Preliminary computations showed that the spheroid
evolves gradually into a sphere. From there on the coef-
ficients of the differential equations have to be altered
since the expression for the eccentricity becomes imagi-
nary and this is physically unacceptable. This circum-
stance implies that the configuration becomes prolate.
We shall give in what follows the pertinent relations for
the prolate case and for the sake of completeness also
the relations for the oblate case with similar notations;

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System

the subindices o and p will indicate oblate and prolate
configuration respectively.

A¥,
Yoleo)=——— , 7, (ep)=Vi—e; A}, ,
2
V1 —eg
- A3
8O(eO)= \/1 _eg A:o > 8p(ep)=__ﬂ———
: Py
V1 el
We have (from Chandrasekhar 1969)
1—e2 (1-e
A J—L— arc sin ey — )
0 3 2 ’
eo eo
R RV A
A= — 3 arcsine,
eo €y
1 (a-¢ 1+e
AszT_( 3p) In =
ep 2ep 1 —€p

—e2 1+ 1—e?
1 ep In ep _2( 2ep)’

A¥ =
3p o3
p

e, and e, are the eccentricities such that
Zsph \ 2 Roon \2
e =V1—{——) ,ep=vVI{—]) .
Rsph Zsph

For either the oblate or the prolate case, the differen-
tial equations are: -

a1,
d?I,,

which are the same as in (6). The subindices 11 and 33
are used here in place of xx and zz respectively.

The explicit expressions for the I's and the W’s are
given below.
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1) when p(envelope) « R™
I, =1,,=2/3K R}
v o “sph oblate and prolate,

Lis=2/3K, 20y

Wi =Wa,p =x7,(0)

W3 =X5°(eo)

oblate;

Wi =Ws, =X'7p(ep)
Wis =X Sp(ep)
4K*GB
(15)* Ry,
2) For p(envelope) « R™® we have
I] 1 =122 = 1/3 K] R:ph
Ls=13K, 2,

prolate.

where x =

oblate and prolate,
Wiy =Was =y, (e0)
oblate,
W;3=¥84(e0)

Wi =Wy, = Bl"Yp(ep)

W;3 = l»l"o‘p(ep)

prolate;

where
2559K3 G

V= s Repn

VI. SOLUTION OF THE EQUATIONS

One can generalize the solution of the differential
equations (6) by introducing the functions f(t) and g(t)
such that

Rsph ®)=1() Rsph o ,
and
Zph =g Zsph O .

where Rspp(0) and zsp,(0) refer to the initial dimensions
of the spheroid of region 1. The solution of the equations
using the dimensionless functions f(t) and g(t) are then
applicable to configurations with varying dimensions
provided they have the same initial eccentricity.

The simultaneous equations (8) and/or (9) can be
solved numerically making use of an algorithm due to
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Fehlberg (1972). This is the Runge-Kutta-Nystrém algo-
rithm of the sixth order.

We have considered such solutions only for n=6,
p(envelope) @ R, and for the case where the configura-
tion deviates only slightly from sphericity and is close
to an equilibrium state. For a spherical system in steady
state the virial theorem states that E=1/2 W; for our
configuration which is oblate at the start of the evolu-
tion, we can use the expression E = 1/2 W,, where W,
is the initial potential energy.

We further assume the total energy, E, to be constant,
the initial velocities of contraction or expansion to be
zero, and the eccentricity e =0.3; with this eccentricity
the initial ratio of the dimensions is

Zsph

~0.954
sph

our assumption on the near-sphericity of the initial con-
figuration is thus justifiable.

With these initial conditions and using the Fehlberg
algorithm we have obtained the numerical values of the
functions f(t) and g(t). Table 1 lists some sample values,
while Figure 1 gives the plot of f(t) and g(t) as a function
of the parameter 3 X 107'2 t p,%2 Here t is given in
years and p, is given by the following expression:

K
Py ==~ andis

Rgph(O)

4/3 7 times the mean density of the system (in Mg
kpc3).

TABLE 1

COMPUTED VALUES OF f(t) AND g(t)
ASSUMING e¢=0.3

ta £(t) g(t) gt) £2 (1)
0 1 1 1
3.698 0.998 1.004 0.999988
7397 0.993 1.015 1.0008
11.095 0.986 1.030 1.0013
14.794 0.978 1.046 1.0004
18.493 0.972 1.058 0.99958
22.191 0.969 1.063 0.99811
25.890 0.970 1.062 0.99923
29.588 0.974 1.053 0.99895
33.287 0.981 1.039 0.99989
36.985 0.989 1.023 1.00061
40.684 0.995 1.009 0.99893
44.382 0.999 1.001 0.99899
48.081 0.999 1.0007 0.99869

a. in units of 0.977 X 10® y.

In Figure 2 we plot the variation of the eccentricity
as a function of time, or strictly as a function of 3 X
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Fig. 1. The variation of the functions f(t) and g(t) in time. The
abscissa is the quantity 3 X 10712 t p4}4; px is equal to 4/3 mp,
where p is the average density of the configuration.

10712t p, % as in Figure 1. One can see from both figures
that the configuration varies between an oblate and
prolate form. Several test solutions with varying initial
eccentricities have indicated that the period of oscilla-
tion does not depend on the initial value of the eccen-
tricity, if the latter is small.

0.3

0.2

OBLATE PROLATE OBLATE

oL

1 1

8
310712 1p¥1/2

Fig. 2. The variation of the eccentricity, e, in time. The abscissa
is the quantity 3 X 10712 t py /2 ‘

1t is clear that the configuration undergoes an oscil-
lation; starting from an oblate form it evolves gradually
into a sphere and then proceeds towards a prolate spheroid
to return again to a spherical form and finally to com-
plete its first cycle by going over to the initial oblate
spheroidal state until a violent relaxation takes over.

The period of oscillation corresponds to 12.5 units in
the abscissae of Figures 1 and 2. One can have an idea of

the time scale of the variations by applying the results
of the solutions to specific cases. In Table 2 we have
listed the period of oscillation, P, in years for a total mass
of the system of 10! solar masses and for the different
initial values of R, namely 30, 40 and 50 kpc (e = 0.3).

TABLE 2

PERIOD OF OSCILLATION FOR DIFFERENT
DIMENSION OF THE SYSTEM

Ro Ky Px P
(kpc) Me) (M® kpc ™) )
30 10! 3.7 x 10° 2.16 X 10°
40 10! 1.5 x 10° 3.33x 10°
50 10! 8.0 X 10° 5.23 X 10°

px = 4/3 m p, where p is the average density of the system.

The procedure discussed above is also reasonably ap-
plicable when e=0.5. The corresponding ellipticity is
0.87 For e=0.5 the time of oscillation is shorter by
17%, compared to the case of e = 0.3.

VII. DISCUSSION

As was to be expected there exists a relation between
the period of oscillation and the mean density of matter
in the system. Figure 3 is a plot of log P versus log p.,.
The slope of the straight line is nearly — 1/2. Thus we
have that P2p = constant. This relation is well known for
adiabatic pulsations of Cepheid variables. What appears
to be new —so far as our information goes— is the varia-
tion in time of the form of the spheroid from an oblate
to a prolate one and back.

15 T T T T T

E Posc (years)

s | «=_Total Mass (M.)

F] = R%ph (0) \kpc?

‘5

a

g
o] od -
5 Il | 1 |

-5 ) 5 og p* © 15

Fig. 3. The relationship between the period of oscillation, P,
and the average density.

The lifetime in the oblate stage as well as in the prolate
one is the same and should be slightly less than the in-
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terval between two successive spherical forms since as
they approach a spherical form they are indistinguishable
from it. Thus for Ry = 50 kpc it is at most equal to 2 X
10° years. This is rather short compared to the age of a
galaxy. Also according to our results the oblate and
prolate configurations should be equally probable. It
is difficult to distinguish a prolate system from an edge-on
oblate one without further data than optical inspection.

It is interesting to have an estimate of the average
value of the crossing time of a particle in our model. As
we mentioned earlier the system of mass points is initial-
ly close to an equilibrium state: E ~ 1/2 W, (fore = 0.3).
An average value of the dispersion of velocities to assure
an equilibrium state for the spherical case with dimen-
sions R=150 kpc —neglecting the very tenuous envelope—
and for the assumed density law, is v 3040 km s™*.
The crossing time will then be t, = Ry, /0~ 10° years.
The oscillation period is thus of the order of a few cros-
sing times. Our treatment is thus valid within one oscil-
lation period.

In the likely case that the onset of oscillation is due
to the tidal perturbations of neighboring galaxies, the
formalism presented above also enables one to calculate
the evolutionary steps that the perturbed system goes
through. It is worth mentioning that Bertola and Gal-
letta (1978) have shown that five galaxies, namely
NGC 1947, 5128, 5363 and those associated with Cyg
A and PKS 1934-63, show prolate structure. At present
we lack a systematic search to know the relative frequen-
cy of prolate and oblate systems.

The orthodox belief has it that galaxies are formed
through contraction of a more extended gaseous config-
uration. Our results show that a system as we have envis-
aged does not undergo contraction. In our treatment
encounters are assumed either absent or are such that
the density in phase space remains invariant. It appears
therefore that collisions between the particles of the
system (viscosity) are needed for the system to contract
and flatten if no external forces are acting. Recent nu-
merical simulations (Brahic 1975) confirm the theoretical
findings of Poincaré (1911) that a rotating system of
gravitating mass points will flatten as a result of inelastic
collisions. Thus the existence of subsystems or popula-
tions with differing mass distribution and kinematical
properties can reasonably be explained by the process of
gradual contraction if encounters (at least a fraction of
them) are inelastic. The apparently smooth and mo-
notonic distribution of the stars in E galaxies is generally
believed to be the result of relaxation. But it is quite
probable that the monotonic (or nearly so) distributions
may have been a primeval property of the cloud, before
the stars were formed as such.

Be the reason what it may, E galaxies at present seem
to fulfill the initial conditions for our model to be ap-

plicable to them. In fact the only well established cases
of prolate spheroids are E galaxies. They may therefore
be in a transient stage. The same can be said as to the
transient nature of oblate E galaxies.

The formation of a prolate configuration may have
some bearing on the existence of “tri-axial” regions
within elliptical galaxies and in the central regions of
spirals. The tri-axial figures referred to may not be
distinguishable observationally from a prolate one, or
there may exist subsystems of varying eccentricities
within the system as a whole. It is interesting to point
out that a recent study of the geometry of NGC 3379 by
Nieto and Vidal (1984) gives clear evidence to the exis-

-tence of subsystems in elliptical galaxies. To attempt a

model with less restrictive initial conditions might bring
one closer to understanding the existence of prolate
regions within an oblate system and viceversa. Some of
the hypotheses to be tried are: i) a different density law
which may be allowed to vary in time, ii) a larger initial
eccentricity (e > 0.5), iii) existence of viscosity or en-
counters in an evolving system. The models discussed by
Larson with viscosity can be reconsidered in the light
of our approach.

It is desirable to determine observationally the rotation
axis of the ““tri-axial” region (or regions) of a galaxy with
respect to the remaining parts; if the postulated tri-axial
region has a prolate form, its axis of symmetry is expected
to be its rotation axis and therefore that of the whole
system. As yet the orientation and the axes of symmetry
of elliptical galaxies are not satisfactorily determined.

Finally we like to mention that the formalism of the

‘Tensor Virial Theorem can also be applied to study the

oscillation of a globular star cluster undergoing a pertur-
bation due to the galactic potential field or to cluster-
cluster approaches.

This is Contribution No. 145 of Instituto de Astrono-
mia, UNAM.
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