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RESUMEN. Se analiza la definicidn de vacio conforme para observadores
acelerados uniformemente que siguen las trayectorias de los 9 vectores
de Killing conformes en el espacio plano de Minkowski.

Se introduce la nocidn de fluido de referencia fisico para caracte
rizar las trayectorias y para utilizar de manera general el método de
diagonalizacidén instant@aea del Hamiltoniano. E1 formalismo propuesto
permite sugerir la existencia de algunas hipersuperficies privilegiadas
sobre las cuales existe una buena definicidn del estado de vacio. Se ha-
ce la distincidn con el estado de vacio verdadero y se destaca la opera-
tividad del estado |0> definido de esta manera para calcular<T, >, el
valor de expectacidn de vacio del tensor energia-momento que sera la
fuente de las ecuaciones de Einstein.

ABSTRACT. The conformal vacuum definition for non-inertial observers fol
lowing the trajectories of the 9 conformal Killing vectors in Minkowski
space-time is analyzed with the method of Hamiltonian diagonalization.
The notion of physical fluid of reference is used to characterize the
trajectories and to deduce the diagonalization condition. The existence
of some privileged hypersurfaces on which a good vacuum definition can
be made is suggested to be the first step towards a general theory of
non-trivial vacua.

I. INTRODUCTION

The formulation of a theory containing naturally all the interactions present in na-
ture has not been possible yet. The most serious difficulties are met when the unification of
general relativity and quantum mechanics is faced. However, a semiclassical theory has been de-
veloped as an approach to a more general, full quantum theory, in which gravity is treated as
an external, non-quantized field.

This semiclassical limit provides a reasonable frame to study other quantum fields
in the presence of a strong gravitational field up to regions characterized by the Planck scale
(1p n 10732 em, tP n 10743 seg, Ep n 1027 eV). Particle creation has been predicted when there
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is a dynamical gravitational background field (Parker 1969, Hawking 1975). This is an inter-
esting phenomenon that has originated various cosmological and astrophysical applications (Grib
and Mamaev 1970, 1972, Zel'dovich 1970, Zel'dovich and Starobinsky 1972). It might have elimi-
nated the initial annisotropies in the early universe (Parker 1969). It could also help to avoid
the classical Hawking and Penrose's hypothesis on the inevitability of singularities and, there-
fore, to propose cosmological models without singularities (Hawking and Penruse 1970, Hartle

and Hu 1980).

However there are some difficulties which arise in the quantization of the matter
fields even in flat space-time. Plane waves are undoubtedly a good solution of the scalar field
equation. However a non-Cartesian space-time coordenalization will lead to a different particle
model (Fulling 1977) or, equivalently, to different vacuum states. The Rindler-Minkowski coordi-
nate transformation has been extensibly studied. Thermal radiation will be detected by a (uni-
formly accelerated) Rindler observer in the usual Minkowski vacuum state (Unruh 1976). Other
non-inertial vacuum definitions have been studied by Brown et al. (1982).

Is the vacuum state observer-dependent?

In the Heisenberg picture the field is assumed to be always in the same quantum
state, let us say 10,>; however the ideal particle detectors that have been designed (Unruh
1976, Birrell and Davies 1982) are not objective since they measure the modes defined with re-
spect to its carrier's proper time. Therefore, they are not appropriate to measure real parti-
cles.

It has been said that local quantities such as<<W]Thv(x)|?>, may lead to a more ob-
jective knowledge of the real state of the field. The energy-momentum tensor Tuv(x) provides, in
fact, a detailed, observer-independent physical interpretation of the quantum field theory at
point x. However, as the only quantity which makes sense in a quantum theory, is< T, (x)>, the
problem of the vacuum definition is not avoided in this way. The state |¥> in which<V¥|T |¥> is
evaluated must be specified anyway. uv

In section II we introduce the notion of physical fluid of reference, which will be
associated in section III with each non-inertial observer in order to formulate a quantum field
theory containing the observer in a natural way. This approach does not solve the problem of
finding the real vacuum state. We are just able to point out some properties of the different
possible vacuum states. However, the method might be generalized to curved space-time where all
the symmetries of Minkowski space are lost and the problem becomes more complicated: the natural
vacuum state in an initial static region of space-time will, in general, be a many-particle
state in a final, also static, region when the universe has undergone an evolution

The formalism that will be introduced in sections II and III will be used to ana-
lyse, in a forthcoming paper, the thermal radiation of black holes (Hawking 1975) and the cos-
mological particle creation in universes with Robertson-Walker metrics in what intends to be a
general theory of non-trivial vacuum states. The method of Hamiltonian diagonalization is re-
examined and used to test the conformal vacuum definition.

II. PHYSICAL FLUID OF REFERENCE

Some of the notions introduced by Lichnerowicz (1955) and Cattaneo (1961) will be
summarized in this section. They will be used in the next section to solve the field equation.

To choose a Galilean reference system in flat Minkowski space is equivalent to
choose an arbitrary time direction. At each instant, from a given origin on this temporal axis,
the normal 3-space becomes completely determined and represents the physical space at that
instant. The physical state is easier to be visualized if it is full of infinite ideal particles
rigidly tight together, called reference particles. The particles time directions are the lines
parallel to the time axis.

We consider the space~time a globally hyperbolic Riemannian V, manifold as in gen-
eral relativity. The metric tensor has signature (-, +, +, +). A physical reference fluid S is
a congruence of lines i.e., a family of curves each associated to a point within a domain of the
space-time manifold. These lines are, in fact, the time trajectories of the particles which
constitute the reference fluid. We may assign three spatial coordinates (x!, x2, x%) to each one
of these particles which -remain constant for the same particle. In a system of physically admis-
sible local coordinates (xq, X;, X, X3) (such that the lines x” = var. are oriented on the time
direction and the hypersurfaces x° = cons. on the orthogonal 3-space) the history of the parti-
cles coincides with the coordinate line x° = var.

2. Locally associated space and time

Let (x*) be a physically admissible local coordinate system and S the corresponding
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reference fluid. The unitary future-directed vector y(x) tangent to the line x° = var. and nor-
malized as

g].l\)Yu(x) Yv(x) =-1 u,v = 0,1,2,3,

completely determines S.
In some non-generic fluid we can define the coordinate system adapted to the fluid
as that in which the components of y(x) are

1/(-gg0) 1/

-Y =

Yl =0 i=1,2,3,
_ 1/2 '

Y, gm/( €00)

and the totally adapted or syncronic coordinates are those in which:

Yo =1
Y =0
YU B gUO

Let fx be the one-dimensional subspace of the y-colineal vectors in the tangent vec-
tor space at the point x, Tx and £, the orthogonal 3-plane: 04 and I, are called time and space
associated to the point x (Cattaneo 1961).

Any vector Ve Ty can be decomposed univocally in the sum of two vectors Aef, and

Nez,
V = A+N (Aeb,, Ner ) .
The temporal and spatial projections can now be defined as
)
v
Je( WA =- v yo
63 ) ' b v v
W =N = ( + LA \4 .
z H gUV YUYV YUV

These expressions represent the natural decomposition of a vector V in the physical
reference frame, S.

We can now define the temporal norm

BTN LI HyV
[1V]1g = g, A% = & g

U
and the spatial norm

WV _ Ty
e = g NN Yoy W

and it is now clearly seen that the tensors - y Yy and Yuv play, respectively, the role of tem-
poral and spatial metric tensor, a property which will be useful for deriving the field equation.

3. Projections of second rank tensors.

The following obvious notation indicates the natural projections of the tensor t

QP 0B 0 = - 0B
Yer ) = Yge ¢ c; 06t VYoo gt ’

® = - of = of

“‘ez( ) YuY YvBt JZG( uv) T \)YB '

If these deflnltlons are applied to the metric tensor, the following interesting
properties are obtained:
P a8

(g )

= B B = -
2z &y YyoYyp 8 yue(g\) v,y ) Y (1-a)

uv
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o) = O = (1=
Pro (8 = Yokgy) = 0 (1-b)
_ ad _ -
Qee (gw) =Y YeYeE T T Yo'B (1-c)

The spatial and temporal metric tensors turn out to be the II and 60 projections of
the space-time metric tensor guv.

The tensor index will be
i) completely spatial if yu t eeo U oo =0, or

ii) completely temporal if yuvt cee U 0. =0
4. Differentiation rules: transversal and longitudinal derivation.
We define the transversal or spatial derivative as:
~
A"
3 ¢ = 3
2 TN
and the longitudinal or temporal one as
26 = -y
u¢ Y,Y 0 ‘ 4
They are obviously the spatial and temporal projections of the complete derivative
~ -
3 = 93¢ + 0
U¢ U¢ U¢

Analogously the covariant derivation can be defined as

~ @
Vusv = ZZ(VuSv)
= Y.
ITERAY VaSB
= DY - AJG'
ausv Ev Sa
where
Te -1 o8 Y
Tw =78 Gpvyg * 37, = 3gY,)

are the spatial Christoffel symbols.
The above definition is easily generalized for tensors:

~ e
7 S =.)
VS = rrx V50’
~ ~\) Nv
= S, -T’. s _~-T" s
au Bp ub “vp up v

If the lines x° defining the physical reference system S constitute a congruence
with a family of orthogonal hypersurfaces V;, this covariant transversal derivation at the point
x can be identified with the ordinary covariant derivation on the hypersurface V; with induced
metric tensor Yuv through x. However, even in the case in which the orthogonal hypersurfaces do
not exist the notion of transversal derivation has a meaning.

5. Intrinsic properties of a physical reference system
As we have already mentioned, a reference fluid S can be individualized by the unit-

ary temporal vector field y(x). All first order characteristics of this fluid are contained in
Vuyv. Let us decompose VHYV into its symmetric and antisymmetric parts

1
= = (K +
Vqu 5 ( " qu) R
where.
K = +
v VUYV VVYU
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is called the Killing tensor and
Yo TR TR,
is the vortex tensor. Another natural vector is the curvature of the lines x° = var., which is
defined as:
v
C =+vV cezl
TR A ( )
The corresponding spatial or temporal projections of these tensors are
~ —~
Q = - = - -
v qu + Cqu Yqu Kuv Kuv Cqu YUCv
~ ~ Y ~ YU ~ 0
= V. _ - = ¢
Gy = Yo G 3, ) Ky = Y 0¥,

Yo Yo
We will say that
i) if Cu = 0, the fluid is geodesic (the lines x" = var. are geodesics in V),
ii) if ?2’11\) = 0, the fluid is curl-free,
iii) if ?(’w = 0, the fluid is static or rigid.
The condition of curl-free or non-rotational fluid ii), is equivalent to
YO +v Q2 +vYQ =0 2) ,

H VP VvV pu p v

which can easily be proven with a little algebra. This property guarantees the existence of
ortoghonal 3-planes.
We will also use the important relation

_ 1 ~ ~
Vqu = ; (Kuv + qu) - Yucv

The Christoffel symbols can now be written in terms of the tensors we have intro-
duced, as

p_pp_1
o Tuv 2

where the non-tensorial quantity qu is defined as

Qo = 3y + oY,

6. The scalar field equation for a given reference fluid

o ¥ "3
g {\(U(K\)e + 29 +y, K

ot 2e) F Y, - R,

uv

We will now use the above definitions to find an expression for the scalar field
equation in which the role of the reference fluid is explicitly indicated. For simplicity we
will work with a massless though the generalization to the m # 0 case is inmediate.

A real massless scalar field is described by the classical action

sfg] = - L ] d'x (6, 0™ + Ere?) :

2 U

A variational principle leads to the Klein-Gordon equation
(m-ER)¢ =0 3 ,
where Q = g“Vvuav and £ is the coupling constant.

~/
We will consider an irrotational fluid, i.e., qu
adapted coordinate system exists and we have

= (gl/2
YU (gOO > 0, 03 0 )

= 0. It can be proven that an
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Applying the definitions introduced above, expression (3) can be written as

MV MY _ (g _ 1 e® X ~
GyT+ v {80 [PW S & (r {Kyg + R} + v (K o + Que} +

+vglay, - Ky »)o o) - £ro =

- 0y2 P 1w j1\Vid 0 _
= - 0008 - age - a0+ [, - YR Jv00 - gre = 0 )

III. CHARACTERIZATION OF NON-INERTIAL VACUUM STATES IN FLAT SPACE-TIME

We will make a systematic analysis of the natural vacuum-states for observers whose
world lines are the trajectories of the conformal Killing vector fields in flat space-time and
will point out some of their properties.

The notation that will be used follows.

A conformal Killing vector satisfies the equation

L =Ax) g (5)
Kuguv HV
Condition (2) for the existence of hypersurfaces orthogonal to the vector field can
be written in terms of the conformal Killing vector as
K.
LuK\);p]
where now, the vector yY(x) characterizing the fluid is obviously

= 0 L

W= (k272 gH 6)

and coincides with the trajectories of the conformal Killing vectors, all of which have constan
acceleration.
The following important theorems were stated by Brown et al. (1982):

1, 1If Ku is a Killing vector field of the metric ng v’ it is also a conformal Kil-
ling vector field for the metric guv. o

2, 1f KM is a conformal Killing vector field for g v? it is also a globally tempora
Killing vector field of the space-time with metric tensor (-geu KO xP)-! gyv. Moreover, if KH
is curl-free, this space-time is ultrastatic (i.e., it admits a constant Killing vector field :

the norm of the temporal Killing vector ggo¢ = cons.).

3. All ultrastatic conformally flat space-time is locally Minkowski, the Einstein
static or the open Einstein universe.

There are 9 conformal Killing vector fields in flat space satisfying equation (5)
which have already been described by Brown et al. (1982, 1983). Table 1 summarizes the proper-
ties of Minkowski space regions where these vector fields are temporal T(K) is the set K? =
g K'KV< 0.

[od Let us now think each one of these conformal Killing vector fields as a physical
reference fluid such as it was introduced in the previous section. The world lines of the parti
cles which constitute the fluid can be identified with the trajectories of the conformal Killin
vectors.

With a little algebra the following useful relation is found (see Appendix I)

~ = (g2 -1/2
K (-K%) A(x)Yu\,
when K" is a conformal Killing vector.
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Introducing now this expression into equation (4) it turns out that

do0d + (KB = (21 - y"30v0)00 - 39 =0 R
2

where YlJYij = 3, R = 0 and theorem 3, written in the form

= (—K2)e!
s (-K%)g v
have been used to find an easier expression (g'
static or open Einstein universes). 4 i

There is not a general solution to this and being A (x) = A(x’, x7) it cannot be
solved by separation of variables.

It can be shown (Brown et al. 1982) using theorem 2 that these three spaces g' v
possess globally temporal Killing vector fields: H

v is one of the three ultrastatic Minkowski,

K' =g' K’
uo B |
As it has already been said (Unruh 1976) in this case there exists a natural defini-
tion of positive frequency modes with respect to these Killing vectors having the temporal de-

pendence exp (+ i w t). The corresponding vacuum state is the ground state of an Hamiltonian
defined as

(8)

H=J dz Ty )
z

where

= 1 po 1
T = (152800, 6., + (6 -3 g 8" ¢ 0., -2, 6+5Eg 0D

- g[Ruv - %-Rguv +-% ERquJ¢2 + -;—-(1-—3&)m2guv¢2

The solutions to equation (7) that we can assume to have more physical content are
are the conformal modes. 1f ¢' is the ultrastatic solution, then

6 = (k)" 2 )

Brown et al. (1982, 1983) have presented a systematic analysis of the conformal
Feynman propagators corresponding to the 9 conformal Killing vector fields mentioned above and
they obtained an interesting compact expression to evaluate the energy-momentum tensor in terms
of KH. However, we are interested in the physical properties of the conformal vacuum states as
they can help to clarify the role played by the different observers more than the conformal
structure of the regions T(K). We do not want to go out of Minkowki's space. In this sense we
apply a highly physical method to test the conformal modes.

2. Hamiltonian diagonalization

This criterium has been used in various opportunities to select vacuum states (Ma-
maev et aql., 1976, Castagnino et al. 1975, Fulling 1979). It has also been severely questioned a
it presents ambiguities when there is an annisotropic background geometry (Fulling 1979). More-
over, it predicts a massive particle creation whith finite energy density when the scalar field
is conformally coupled to the gravitational field, although the energy density is infinite when
other couplings are used (Unruh 1976, Fulling 1979).

However, recent works favour the conformal coupling even for massive fields (Mari-
nov 1980, Nelson and Panangaden 1982). For example, a scalar field with quartic autointeraction
can only be renormalized if it is conformally coupled to the curvature at least in the small
autointeraction limit (Nelson and Panangaden 1982). Therefore, it seems a reasonable task to
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regain confidence in the method of Hamiltonian diagonalization. Moreover, as we are now working
with a massless field in flat space this criterium can hardly be objected.

We call it instantaneous diagonalization as the Cauchy data which diagonalize the
Hamiltonian on a given hypersurface could not coincide with those sharing the same property at
any other instant. We will use a general expression for the Hamiltonian and the mathematical
method used to diagonalize it will contain all the 9 observers in an equivalent way. However, it
must be noticed that the introduction of the reference fluid is a natural way to understand that
the hypersurfaces on which the Hamiltonian is defined are those orthonormal to the observer's
trajectories and, therefore, they are different in each case. The conformal modes (9) should
also be normalized on these particular surfaces.

Using (7) we can write

1 2 _ vij
i 2 Sdz {(b’o goo ¢,i¢aj}

[
Nlr—-

2 ij,
3 az {¢’0 * Y ¢9i¢9j} (10)

The expression

iy e D = - vgh + v e a1

holds in every space-time. The following integral performed on a compact surface is always null
| 4 @yh =0 (12)
5 i
From (11) and (12) we can, therefore, write
=1L 2 '
H=3 5 dy {¢,0 + 90" o} (13)
Second-quantizing the field into its positive and negative frequency parts
+
¢ _ 3 *
S A K (ap ¢p + ap ¢K)
and taking into account the eigenvalue equation

k

where eg is the eignevalue that corresponds to the autofunction £+ , it can easily be proven

' - 22
Asf-ﬁ e_lzf

that thé Cauchy data diagonalizing the Hamiltonian (13), are
io -ig,
e * e *
¢K 5 = fﬁ ’ ¢, = — f-)
3} €
V2 k k V2 z k
(14)
€7 T * ?*_ -10,
¢i€ = 1 —‘k ela f_lz , ¢-’ = —'i /—IS- e 1 f_*
2 k 2 k

If we take the conformal modes (9) and their derivatives and evaluate them at a
fixed time, it is immediately seen that they verify the Cauchy data (14) only on the hyper-
surfaces satisfying equation

30[(_1(2)-1/2) =0 (15)
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where 3¢ denotes derivation with respect to the time coordinate x°.

Table 1 includes in its last column the surfaces, called I,, where condition (15) i
satisfied. Figures 1, 2, 3 and 4 show the observer's trajectories in the most simple cases and
the orthonormal hypersurfaces are also indicated.

+ ]

A 'r')

0

B

AN AN AN AN AN AN

';r

t=const.

Fig. 1. Temporal future-directed trajectories of Fig. 2. Temporal future-directed trajectories
Minkowski Killing vector field. Horizontal lines of the Rindler observer.{ T = cons.} lines in-
indicate the {t = cons.} hypersurfaces. dicate the orthonormal hypersurfaces.

Fig. 4. Temporal future-directed trajectories of Fig. 3. Temporal future-directed trajectories
the observer following the orbits of XKj. of the Milne observer. {T= cons.} hypersurfaces
are orthonormal to the trajectories.
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V. CONCLUSIONS

The results we have obtained display interesting features of the conformal vacuum
states.

In the first place, the fact that good vacuum states exist only in some particular
hypersurfaces does not mean that there will be particle creation between the surfaces verifying
equation (15) for each one of the 9 cases. Indeed the good particle model is the same on every
privileged surface in each case, i.e., the conformal modes. Therefore, there will not be parti-
cle creation as could be expected from the conformal triviality of the situation. The Bogoliubov
transformation will yield B(t, T') = O.

The analysis we have made suggests that a good vacuum definition could be reasonably
expected on some surfaces though not oa the whole space-time. Notice that we do not refer to the
peal vacuum in the sense mentioned at the Introduction. This fact is not disturbing as it is
usually supposed in the literature that a good vacuum definition is only possible in some partic
ular or trivial cases, such as adiabatic in or out regions (Parker 1969). The surfaces veri-
fying equation (15) are those in which K" is an instantaneously temporal Killing vector and then
the situation fits into the trivial case referred to in the preceding section (equation (8).

APPENDIX I
Using equation (6) it can be written that
1 { 9K 3K 2 =1/2
K =0 | —y+ = + (K A
et (B )« o,
Now being
~ |\
Kuv = ') ZZ(Kuv)
and
0 ‘
J $) =0 , Vspey) = Ty ,

it obviously turns out that

~ - (w2 -1/2
Kuv (-K*%) A Yov
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