PHOTOMETRIC MEASUREMENTS OF WH $_{\beta}$ AND [OIII]/H $_{\beta}$ OF HII REGIONS IN M83

M.V.F.Copetti¹, H.A.Dottori, M.G.Pastoriza

Instituto de Física Universidade Federal do Rio Grande do Sul Brasil

ABSTRACT. WH $_{\beta}$ and [OIII]/H $_{\beta}$ were measured photoelectrically in 12 HII regions of M83. It was not found any systematic variation of WH $_{\beta}$ or [OIII]/H $_{\beta}$ across M83. The very low excitation of the emission nebulae in M83 may be a consequence of the time evolution of the HII regions.

I. INTRODUCTION

In many spiral galaxies there is a strong dependence between the spectrum of a HII region and their galactocentric distance (Searle, 1971; Smith, 1975), which is attributed to a chemical composition gradient across the disk of the galaxy. In this work, we study the behavior of the H $_{\beta}$ emission line equivalent width WH $_{\beta}$ and the ratio of the forbidden lines $\lambda\lambda4959$, 5007 [OIII] to H $_{\beta}$ in M83 (= NGC 5236).

II. THE OBSERVATIONS

We measured photoelectrically WH $_{\beta}$ and [OIII]/H $_{\beta}$ in 12 HII regions of the M83 with the 1.60 m telescope of the OBSERVATORIO ASTROFÍSICO BRASILEIRO at Itajubã, Brazil. We used three interference filters: the H $_{\beta}$ narrow, with passband $\Delta\lambda$ = 30 Å; the H $_{\beta}$ wide, with $\Delta\lambda$ = 150 Å; the [OIII] centered at 5000 Å, with $\Delta\lambda$ = 90 Å. The shift of the transmission of the filters caused by the radial velocity was taken into account.

III. THE RESULTS

Log [OIII]/H $_\beta$ and WH $_\beta$ versus the galactocentric distance ρ are plotted in the figures 1 and 2, respectively. The main conclusions are:

i) The [OIII]/H $_\beta$ and WH $_\beta$ values of the HII regions at a same galactocentric distance show considerable scattering. It is not observed a 1. CNPq Fellow.

137

gradient of [OIII]/H $_{\rm g}$ or WH $_{\rm g}$ across M83.

ii) The HII regions of M83 have very low excitation. The [OIII]/H $_\beta$ ratios and the WH $_\beta$ values are smaller than those ordinarily found in other spiral galaxies.

IV. DISCUSSION

The very low excitation of the HII regions in M83 is surprising. There are many HII regions with WH $_{\beta}$ $\stackrel{?}{\sim}20$ Å and [OIII]/H $_{\beta}$ $\stackrel{?}{\sim}0.1$. These emission nebulae must be excited by stars with effective temperatures T $_{eff}$ $\stackrel{?}{\sim}30000$ K, which correspond to ZAMS stars with mass M $\stackrel{?}{\sim}15$ M $_{\odot}$. This seems to be an excessively small value for the upper stellar mass limit of the ionizing associations.

In a previous work we studied the time evolution of HII regions through models which take into account a single burt for the formation of the ionizing associations with different initial mass functions IMF (1 \le x \le 3) and upper stellar mass limits (30 \le Mu/Me \le 120). We found that WH $_\beta$ and [OIII]/H $_\beta$ decrease monotonically as a function of time and consequently they are good HII region age indicators (Copetti et al., 1984).

Comparing these models with the observations, we concluded that the low values of WH $_{\beta}$ and [OIII]/H $_{\beta}$ of the most emission nebulae in M83 are only compatible with evolved HII regions, with ages of about 4 to 7×10^6 years, if one assume that stars with mass M \geq 30 M $_{\Theta}$ are formed in the ionizing associations in M83.

REFERENCES

Brand, P.W.J.L., Coulson, I.M., Zealey, W.J. 1981, M.N.R.A.S. <u>195</u>, 353. Copetti, M.V.F., Pastoriza, M.G., Dottori, H.A. 1984, submitted to Astr. and Ap. Dufour, R.J., Talbot, R.J., Jensen, E.B., Shields, G.A. 1980, Ap. J. <u>236</u>, 119. Searle, L. 1971, Ap. J., <u>168</u>, 327. Smith, H.E. 1975, Ap. J. 199, 591.

M.V.F. Copetti, H.A. Dottori, and M.G. Pastoriza: Instituto de Física, UFRGS, Rua Luiz Englert s/n,90.000 Porto Alegre, RS, Brasil.