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ON THE STABILITY OF ACCRETION DISKS
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ABSTRACT. In this paper the stability of standard o accretion
disks against perturbations in the radial direction is taken
in the Tight of linear perturbation theory.

This analysis starts from slightly different, but
correct, continuity and momentum equations, besides imposing
null boundary conditions on the perturbations and continuity
along the flow. With such a treatment, we do obtain more
stable disks, leading to some modifications in the results
earlier obtained by Shakura and Sunyaev (1975).

I. Dynamics of the accretion disks.

such that

The flow in thedisk is described by cylindrical polar coordinates,
z = 0 is the plane of the disk.

As usual, we make the following approximations:

a - the ¢ component of the velocity is Keplerian

b - the disk is.thin, i.e., 1 << r, 1 = semi-scale height of the disk
r = radial distance

¢ - hydrostatic equilibrium in the z-direction

d - the energy radiative transport is only in the z-direction:.

If we define U(r,t), surface density, as

L
U=2 J pdz
0
where p is the volumetric density and wr¢, the viscous stress as
2 . .
wr¢ = 2 JO Orodz ( Oy = volumetric viscous stress,)

we may write the continuity equation,

UrVv
1——3- U -+ % 3 r =0
ot r ar B A
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or

U Q 9 M\_ - =
5T - TaE 7. { 1 j =0 (I-1), where V. and M = - Z"Urvr = are

respectively the radial velocity and the accretion rate; and the momentum equation
as

W .r
i ro
Bk (—z } (1-2)

where Q is the Keplerian angular velocity.
2

From the hydrostatic equilibrium we have p = E%T& (I-3), where p is
the total pressure, and from the very definition of a - model wr¢ = 2apt (I-4),

which implies Q¥ = é} apf9 (I-5), where o is the parameter of the model.

Proceeding in this way we get the same energy equation as in the paper by
Shakura and Sunyaev

\
2 E . -
(e + p) —g—t— + L % = - —-r%- -%F (e+p) rSLVr} + Vr‘—gT (pe) +\-Q+-Q (I-6)

where Q+, Q” and € are respectively the heat production, the energy removal by
radiation and the total internal energy, i.e., includes contributions from matter
and radiation, as well

Using equations (1), (2), (3) and (5) we easily rewrite the energy
equation as

3
5 + 38 2,928 4 3 2 _ 20 3 5 + 38 QL 3 s g
T3 UQ R + T f (1 +8) UR" L = T []2 } > W(Umr) +
3 aUQBQ
vV, — 1 - Q- 1-7
eV, 2 (1) 4 2 Q (1-7)
where have used
e:%(1+8)p
=}T(1+3) uR?e (1-8)

II. Linearization procedure

As Shakura and Sunyaev when linearizing the continuity and energy
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equation we only retain terms of the order of (zo/x)z, where X is the wavelength
of the perturbation.

If we define the perturbal variables in terms of unperturbed ones

U=U0 (1 + u)
(IT-1)
L= 2y, (1 + h)
where 0 stands for unperturbed variables,the equation of continuity reads
2
8 u=-2 a0 2 (u+n) (11-2)
3t 3 2
ar
Adopting anologous procedure for the energy equation, we get
2 2
5 + 38 U e (
0 2,2 3 0 0 3 3
—_— L — —
= U 'hy —5 h + T at{(“Bo) (u+h) + -1 B
2
5 + 38 2 al 2 -
- —p— gy 2 (ush) + 2O e =0 (11-3)

Q

ar

where B, is the variation of the ratio of radiation pressure to total pressure
To obtain (II-3) we have used the equality of heat production and energy removal
in the unperturbed flow.

III. The energy equation for specific spectral regime

Let us now assume that the disk is a black body in the outer region
and optically thin in the inner region, close to R,. With these assumptions we
are able to assign expressions for g, and 8Q-

In the outer region

Keg << 17 »
P =Py + Py
" y
UL S N e KUty T (I11-1)
mHl

where the first term stands for the gas pressure (electrons plus protons) and
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the second for the radiation :

Kff = free-free opacity
Kp = Rosseland opacity mean (cm-2 g-*)
-7/2
kg = LT / (111-2)
2
A = cte. , T = temperature
Tg = Stefan - Boltzmann constant
Q" = ——p, = —=— 8p - (111-3)

where 1 is the effective optical depth.

From these equations we easily get

1-B, 1-8
Bi ., 0 h+2[ OJu (111-4)
Bo | 3-280 3-280
¢ 2-B. 3
8T _ 4 o | . _2u (I111-5)
To 3-260 3-280
where 8T is ratio of the variation of the temperature to the unperturbed
T
0

temperature.

Inserting III-3,3 and 5 into the energy equation (II-3), we get, after
some algebra

(
2 2
1(24 - 1380 - 680) w + 302 (26 - 1260) w

2 2 .
=5 afld (30 - 1480) w + 3aQ (37 - 1560) y (I11-6)

where we have put y = u+h, and assumed yo exp wt.

The solution of (III-6) in the small wavelength limit is yo sen _E%ﬁ_

which gives the dispersion relation.
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2
(24 - 138, - 663) w + 300w [(26 - 1230)-+§ (10K)2(30 - 1430)]+-2(aalok)2(314533

=0 (111-7)

With null boundary condition in the outer radius R,, K is given by

KR2 =7 (2n + 1)

K- _m(en + 1) (II1-8) , n = integer

R

2
From (III-7) we have an eigenvalue equation for K.
2
, (24 - 138 - 687) w + 300w (26 - 128,)

(1,07 = - ] (111-9)
20w (30 - 1480) + 2(af)” (37 - ]560)

where 12 stands for the scale height at r = R,

In inner region

Q- - _c8p (I11-10)
ﬂTTU
3.1/2
b, = AT (IT11-11)
2
This gives
By 2 | 1L-80 | (2u-n) (I11-12)
Bo 2 - Bo
48
§T _ 4h o (111-13)
o 2B 2-8o

Inserting these relation into (II-3) we get

) 2 2 2
2 .
(16 - 28,) v - 3000 (4 - 38,)| y = —5— ang, zrz y |(20 + 208, - 248) w -

)
- 18 a0 (1 - B) (I111-14)

Putting ya sen Kr yields the dispersion relation

(16 - 28,) o’ - oftw [3(4 - 38) = 5 (1K) (20 + 208 - 248.)] -12(mﬂoK)2?-B&=0)
11f-15
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and the eigenvalue equation for K,

2 - 2 -
0 ,K)° - (16 580) _u) 3aQw (4 3Rp) (111-16)
12(a)"(1-8,) - 2 aqw (204208 -248])
Ql = 2(r=R1)

n

Equating (III-9) and (III-16) and assuming B
R1’ we get

0 at R, and Bo = 1 at

2
3 f 840 ‘ 2 2 1036 180 896 |
A ‘;?7?‘ - 256 } + A f = - 7 - NV
2
S35 S ) (I11-17)
X
R L,
where x = —2— is the disk length and f =
R L
1 1
and A = —2
af(R))
1
Using now the hydrostactic equilibrium equation (assuming By = 1 at R,
and Bo = 0 at Rz) we have in the outer region
R, = 1.78 x 107°° wH/e P/t kol (111-18)
g, = 2.87 x 107 M (1 - 6) | (I11-19;

1

where & is the ratio of the angular momentum of the flow the Keplerian angular
momentum at r = R_. Assuming 8§ = 0.9, we have

11 = 2.87 x 1072 ﬁ, and

-12 M 9/8

f=6.2x10 X (111-20

here M, M are respectively the mass of the central compact object and the
accretion rate.

0 solution,

Equation (III-17) becomes, omitting the X
3/
1 x180 x*/ 11

2
203,22 x 107 g " "< 256 3+ a{ 3.85 x 107} q 183
X

-21
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896 '
-2 - (111-21)
X
3/2
q = M
«7/ 4
M /

IV. Results and Conclusions

An inspection of equation (III-21) reveals that perturbations will
have their growth damped as long as the mass, the accretion rate and the length
of the disk satisfy the relation

M3/2 3/ -
X < 8 x 10 (Iv-1)
Iq7/u =

Obviously besides this, for stability it is necessary that the disk
emits Tike a black body at the outer region. Equating scattering to free-free opacity
at the transition region Xgs We have

7/2 25
T =3.5x 10 o (Iv-2)

From Q; = Q;

7/2 68 o -
T aea x 10" w7/ M7/8xt21/8 (1V-3)

Equating (IV-2) and (IV-3) we get

23/33

xp = 1.3 x 10°7 o7/ wm2/o (1V-4)

if radiation pressure still dominates at Xgs OF
- . u/3

x, = 8.1 x 1077 M 2f3 grle (1V-5)
if gas pressure dominates at Xg-

In the inner region Taff < 1, which means

1/u
16 M
o < 2.29 x 10 —ﬂm (IV-G)

If we now apply these relations for a disk with a critical accretion

rate, we get
g /3 M1/3

x < 1.6 x 107" (Iv-7)
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which is the largest disk length, not compatible with the usually assumed x=100

For o we get

(9.45 x 107%° w*/?

-13/1 :
3/12 e Mlo/e (Iv-8)

36
2.15 x 10 M < a g
5.6 x 10

where the first refers to Pp >> P at Xy and the second to Pp << P at Xy o

9 9

It is worth to remark *hat these conditions do allow for supercritical
disks.
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