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RESUMEN

5 La lumino§idad de un disco de acrecion alrededor de un objeto compacto estd dada por: L =(1 —
E,)Mc?, donde M es la masa por unidad de tiempo que entra al disco y E, es la energia en la dltima
orbita circular estable vista desde el infinito, dividido por la energia en reposo. Se calcula esta ¢ nergia
y la frecuencia méaxima vista desde el infinito vy, usando la métrica estdtica con simetria esférica mas
general. Luego se usan las férmulas obtenidas para hacer cdlculos con métricas particulares, distintas
de la de Schwarzschild, para ver como varian E, y vy, con la teoria de gravitacién utilizada.

Finalmente se extienden los resultados con la métrica estacionaria mds general para tener en
cuenta los efectos de rotacion del objeto compacto.

ABSTRACT

The luminosity of an accretion disk around a compact object is: L=(1 — E, YMc?, with M
being the mass per unit time entering the disk and E, the energy as seen at infinity per rest energy at
the last stable circular orbit. This energy and the maximum orbital frequency vy, are computed using
the most general metric with spherical symmetry. The computations taking some particular metrics,
different from the Schwarzschild one, are then carried out to show the dependence of E, and vy, on
the theory of gravitation used. Finally the analysis is extended using the most general stationary metric
to take into account the rotation of the compact object.
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I. INTRODUCTION

The best known model of galactic hard X-ray sources
is a binary stellar system made up of a normal star trans-
ferring matter onto its companion star, which is a compact
object. This matter, falling inward in quasi-circular orbits,
will form an accretion disk which will emit the observed
X rays.

The gas will have quasi-circular orbits because every
elliptical component would be rapidly damped by the
action of gas in the neighboring orbits.

The gas will acquire a small inward velocity toward
the compact object because of the action of viscosity
torques transferring energy and angular momentum from
the center outwards in the disk.

The friction due to viscosity will generate heat, which
is radiated away through the disk surfaces. This energy is
supplied by the loss of the total energy of the gas, while
going through the disk, down to the last stable circular
orbit. After this the gas would fall almost without radiat-
ing (Stroeger 1980).

1. On a fellowship from the Consejo Nacional de Investiga-
ciones Cientificas y Técnicas de la Repiiblica Argentina.

Using Schwarzschild’s metric (see Bardeen et al. 1972
also for Kerr metric), the last stable circular orbit has an
r coordinate ro = 6mwhere m =GM/c? and M is the mass
of the source. At this r, the energy ““at infinity” per rest
energy is Eq = (8/9)V2. If we take E =1 at the external
radius of the disk and a steady flux of matter (or its tem-
poral average) the total luminosity of the accretion disk
will be:

L=(1-EoMc? , (1)

with M = mass per unit time entering the disk. The equa-
tion (1) is obtained from the fact that: Mc? is the energy
per unit time entering the disk and (1 — E,) is the effi-
ciency of transforming this energy into heat by the action
of viscosity; afterwards this heat is radiated through the
disk surfaces.

The structure of accretion disks has been studied with
Newtonian theory (Shakura and Sunyaev 1973) and
with General Relativity (Novikov and Thorne 1973). For
further information on accretion disks see the reviews by
Pringle (1981), Verbunt (1982), and Hayakawa (1985).
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II. METRIC FOR A STATIC, SPHERICAL SYSTEM

It can be proved that the more general static metric
with spherical symmetry can be written (Misner et al.
1973) as follows:

ds?

B(r)c?dt? — A(r)dr? — H(r)dw? , ?2)

do? + sin?0 d¢? .

with dw?

Still we have the freedom of choosing H(r) as a function
of r, for example:

H(r) = —r? . @)
From:
/ (ds/d\)? da? = 3

we will have the equations of motion (Sarmiento G.
1982):

0 = constant = m/2 3"
(because the problem is isotropic), then:
B(r) dt/d\ = constant = E ) 3"
H(r) d¢/d\ = constant = J , 3"
(ds/dN)? = constant = —1 > 3"

(choosing A properly). Substituting these in (2) we have:

(ds/d\)?* = B(E/B)* — A(dr/dN)® — H(J/H)vz‘ = —

Solving it for: (dr/d\)? we obtain:
(dr/dN)? = (E?/B-J*/H+ 1)/A = —Vp + E2,

now we can use the effective potential method, as it was
done in Misner ef al. (1973, box 25. 6)
In a circular orbit:

dr/dA =0 = E}B-J)/H+1=0. (4

If we want it to be stable, V¢r must be a minimum.
According to these conditions we have:
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aVeff/ or =0

—A'[E?/B —J?/H + 1)/A® + [-E?B'/B? +
+ J?H'/H*)A =0, ®)
where ' = d/dr .

It will be a minimum if 3% V¢¢/dr? > 0; then the last
stable circular orbit will be given by:

a’veff/arz =0
—~A"[E?/B—J?/H + 1]/A* + 2(A")? [E?/B—J?/H +

+ 1J/A3 — 2A'[- E?B'/B2 + J*H'/H?*)/A?® +

+ [-E?B"/B* +
+ 2E*(B)?/B* + J2H"/H? - 2J2(H")*/H3}/A = 0.(6)

From (4), (5) and (6) we have three equations to solve
for (E, J and r) at the last stable circular orbit.
From (4) and (5):

E? = —B?/(B — B'H/H) , @)

J? = _B'H?/[H'(B - BH/H")] . (8)

Substituting these in (6):
H'H [-B"B + 2(B")2] + BB'[H"H — 2(H)?] = 0 , (9)

where substituting B(r) and H(r) we find r, and going
back to (7) and (8) we find E, and J, (note that these
results do not depend on A(r)).

It is also of interest to obtain the maximum orbital
frequency as seen from infinity vy, since this has been
proposed to be measured as a test for gravxtatlon (Novi-
kov and Thorne 1973).

The frequency “at infinity” is » = d¢/dt. Then, from
equations (3):

v = (/H) (B/E) . Qo)
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and from (7) and (8) we obtain:
v = B'/H
valid for every circular orbit.
If B(r) and H(r) are given we must search for the max-
imum in the range ry <1 <e°e.
We will turn now to particular computations.

III. COMPUTATIONS

As examples of applications of these formulae we will
take several metrics, whose solutions are according to
other theories of gravitation, different from Schwarz-
schild’s General Relativity solution.

1) Scalar-Tensor Theories: The scalar-tensor theories
have the Schwarzschild metric as a solution (Will 1981),
then if the metric’s source were a black hole we would
obtain the following values from General Relativity:

ro= 6m, Eq = (8/9)"2,P . = 2nfv, = 216(6)"*> m =
5 X 107 (M/M ) sec
2) Rosen Theory: (Will 1981)
ds? = —exp (=2M/r)dt? +

+ exp (M /r)(dr? + r?dw?).

There is no horizon in this metric, only a naked singu-
larity at r=0.

E? = (1-M,/n) exp (-2My/r)/(1 — My/r — M, /1)
(Mv)* = (M,/r)* exp (—2(My, + M,)/r)/(1 M, /r)
To = My + 2M, + (M, + My)? + M3)V2,

In the post newtonian limit M 5 /M,, = and from time
delay | v - 11 <1073 (Will 1984). We then take
: 10/My =3+ (5)"2.
From where:

1-E, = .054787

= AL/L = (Lg — Lgg)/Lggp = —4.2%
and

Prin = 5 X 107* (My/M) sec

= Pg/Per = VSRWR = 1074

In the Theory of Chang and Johnson 1980, M, =M,
in such case all the previous results are exact.

3) Lightman-Lee Theory (Lightman et al. 1979,
p. 205):

ds? = —[(1 —u/2)2/(1 + u/2)*]dt® +
+ [(1 = w/2)2/(1 - 3u/2)?] (dr* + rPdw?),

with u=m/r.
This metric has an event horizon at r =m/2.

E? = (1 —4u + 4u® - 3u®/2 + 3u®/16)/

(1 —3u—u?+ 3u’/4+ 3u*/16)
(mv)?= (1 = 3u/2)* w*/[(1 + u/2)® (1 - 3u + 3u?/4)]
Solving:
1 —19u/2 + 17u® — 13u3/2 — 33u®/16 - 27u%/32 = 0
yields ro/m =7.2975 :
then 1 — E, = .0436 = AL/L = —24%,
Pmin = 7-5X 107 (M/M_) sec = PLL/POR = 1,63 .

One might think that these results, close to the Gener-
al Relativity values are due to the fact that the metrics
used have the same post Newtonian limit as the Schwarz-
schild one. In that case, these experiments would not
add anything new. But the next example shows that this
assumption is wrong.

4) With H(r) = — r? egs. (7), (8) and (9) take the fol-
lowing form:

E? = —B/(B-1B'/2) , 7"
J2 = *B'/(2B - 1B") , 8"
—B" + 2(B)?)/B-3B'/r=0 . (9)

We will study:

B(r) = —(1 - 2m/r + 2(8 —v) (m/1)*> + QUm/r)®) |

where § and v are the P-P-N parameters (Weinberg 1972)
while a new parameter Q is introduced.
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By measurements in the solar system (Will 1984)
I 2(8 — )| <1072 and as m/r v 1/6 we have:

B(r) = —(1 — 2m/r + §(m/r)®) valid for every m/r.
Now, with u =m/r:

E? = [1 —4u + 4u? + 2Qu® — 4Qu* + Q%u®)/

[1-3u+ 2.5Qu], an
(mv)? = ud - 1.5Qu’ , (12)

and the equation for uy = m/r, becomes:

Q = [20uy + 3 £(-320u} + 240u, + 9)"21/(30u,)

from where we find?: r,(£2) and Eo(£2) from (11).

Figure 1 shows in percentage the relative variation of
the luminosity with respect to the General Relativity
value (2 = 0) as a function of .

From (1) we have:
AL/L = [L() - L(0))/L(0) =

= [Eo(0) - Eo(QV[1 - Eo(0)].  (13)
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Fig. 1. Relative deviation of the luminosity from that predicted
by General Relativity in percentage, AL/L (see (13) in the text),
as a function of Q. At Q = 2.2 there is a maximum of seven times
the General Relativity value.

2. The horizon r wich makes B(rp) = O fulfills the condition
1h <1, for every Q.
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Fig. 2. Minimum orbital period of a circular orbit as a function
of the parameter Q. At £ = 2.2 exists a minimum which is almost
a third of the General Relativity value.

Owing to the fact that v =0 before r reaches r, (for
§>2.2) the energy at r, must be taken such that
;) =0. From r, we will have spherical accretion and
its contribution to total luminosity will be negligible
(Novikov and Thorne 1973).

For ©<2.2 the maximum frequency is given by
v(ro), while for Q> 2.2 by v(2.58)"2. Figure 2 displays
these values.

IV. ROTATIONAL SYMMETRY

We shall try to extend the results of section II to objects
with non-negligible rotation.

The most general axially simmetric stationary metric
can be written as:

ds* = —B(r,0)dt* + A(r,0)dr* + 2C(r, 6)dgdt +

+ H(r,0)d¢* + K(r,0)d62. (14)

We obtain the geodesics from the variational principle
8S = [(ds/d\)2dA? = 0.

0 =m/2 = constant is a solution to the equation of
motion, also from the astrophysical point of view one
expects the accretion disk to be situated in the orbital
plane, because of the symmetry of the problem (Novi-
kov and Thorne 1973).3

Taking @ =/2, the remaining equations of motion
have the following integrals:

H(r) d¢/d\ + C(r) dt/dX = J = constant , (15)

3. See also Bardeen and Petterson 1975 for other alignment
mechanisms.
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—B(r) dt/dA + C(r) d¢/d\ = E = constant , (16)
and choosing A properly:
ds?/d\? = —1 = —B(r)(dt/dN)* + A(r) (dr/dN)? +
+ 2C(r) d¢/dA dt/d\ + H(r) (d¢/dN)?* . 17

Solving (15) and (16) for d¢/dA and dt/dA, and sub-
stituting them into (17) we obtain the effective potential
equation:

A(BH + C?) (dr/dN)? =

= HE? — BJ? — 2CEJ — BH —C? = —V + E2 .

The three equations.
dr/d\ = dVese/or = 8%Vegg/or? = 0,
can be put in the following form:

«<E*+ BEI+yJ2+8 =0

<E 4+ FEI++J2+8 =0 , (18)

o"E* + B'EJ+ 412+ 8" =0
where ' = d/drand « = H,

= -2C,y=-B, § = —«(BH + C?).

From the first two equations (18) we find E and J at
every circular orbit:

E2 = [-2(y'8 - 8'7) (Y —v<) - (v - BY) X
X (88" —B8) £ (v8' — By') X

X { (88" —B8') + 47’8 —8'y) (x8' —§")}2)

(2y' — 7<) + 2o — By) (=B’ —B)] ,  (19)
1= [ by () — ) — (=B - ') X

X (88— B'8) + (<’ — p=') X

X {('8—B'6)* + 4(cb" — 8=") (v'5 — 8" }2)/

[2(y — y'y? + A<'B— ') By — 78] . (20)

In both equations the + sign corresponds to corotat-
ing orbits and the — sign to counter rotating orbits.
The orbital frequency as seen from “infinity” will be:

»(r) = d¢/dt = (BJ + CE)(CJ —HE) , (21)

where E and J are given by (19) and (20).

To obtain the ry of the last stable orbit we must solve
the three equations (18) simultaneously eliminating E
and J:

ml'(a‘y' _ 75') + 7"(@' _ 8&’) + 8”(«’7 _ ‘y'“) -
=+ { [B"G"y —78)+y"(B's —8'B)+5"B' —vB)IX

x [B”(Oi,s-—ala)'l'a"(ﬁs'——aﬁ')"'8"(«6'—[3&')] }1/2-(22)

Equations (19), (20), (21) and (22) are the generaliza-
tions (when rotation is taken into account) of (7), (8),
(10) and (9), respectively.

As an example of application we will consider Kerr’s
metric:
ds?=—(1 — 2mr/p?)dt? +[(r* + a?)? — a®Asin%(9)] X

X sin? (0)/p? d¢* -
—4mra (sin2(0) / pz)dqsdt + (p2 /A)dr2 + p%do?
A = 1% - 2mr + a?

, P2 =12 + a? cos?()

Taking 6 = n/2, we find:

«=r3+a%r+2ma’? ,f=4ma ,y=2m-r ,

Y
i

—r® + 2mr? — a%r + 8m2a?/r :
then, equation (22) will take the form:
T3+ 6T?+ 3327432 =227 X

X [43?% - 6227 —127% + 1873]"2

where T = ro/mand 2~ = a/m.
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This equation can be solved for T (Bardeen et al. 1972)
giving:

T=3+2Z, F[(3-2Z,)(3 + Z,+2Z,)]"*, where:

Z,

1L+ [1-221" {1+ 71" +[1 - 7]"*}and

[3‘5‘2 + Z12]l/2 .
From (19) and (20) we find E and J as follows:

E=[T"-2T+3 7")/[F X

J=£[TV2(T? # 2a7TV% + %)/
[T(T? - 37 2% T2 )1/2];
for maximum rotation a =m:

o =m , Eg = 1/4/3 and mw,= 1/2.

IV. CONCLUSIONS

This paper shows how the accretion disk luminosity
and the maximum orbital frequency are modified accord-
ing to different metric theories of gravitation. The results
suggest that in detailed accretion disk models these ef-
fects must be taken into account. Besides, in example 4)
we have seen clearly that these effects depend strongly
on the metric structure in the strong field regime.

On the other hand if we had a detailed accretion disk
model, we could take into account the dependence on
metric theories of gravitation to obtain a gravitational
test in the strong field regime.
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