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RESUMEN

Discutimos las aproximaciones que se hacen usualmente para el tratamiento de la difusion en las
capas estelares externas. Analizamos analitica y numéricamente las hipdtesis de difusién binaria y de
difusién sobre un fondo que no se ve alterado por dicho proceso. Aplicamos los cdlculos numéricos a
ciertas estrellas centrales de nebulosas planetarias en las que se ha observado una abundancia de helio
menor que la normal. Encontramos que, en este caso, la difusion puede ser tratada como un proceso
binario pero no puede ser desacoplada del calcuio de estructura. Presentamos un método alternativo
para estudiar la difusidén y lo aplicamos a las estrellas centrales antes mencionadas. De este modo resol-
vemos el conjunto de ecuaciones hidrodinidmicas estacionarias para un gas totalmente ionizado de hi-
drégeno y helio. Este modelo trata en forma consistente el comportamiento de todas las especies. Ob-
tenemos abundancias de equilibrio muy diferentes de las obtenidas con el método del elemento de
prueba mientras la densidad del helio y la de los electrones crecen hacia el interior de la estrella, la de los
protones tiende a disminuir. Sin embargo, cilculos preliminares de estabilidad sugieren la posibilidad
de que éstas no sean las distribuciones reales.

ABSTRACT

We discuss the approximations usually made in the different approaches to diffusion in stellar
outer layers. We analyze the hypotheses of binary diffusion and diffusion over a non altered background
both analytically and numerically. Numerical calculations are applied to central stars of planetary
nebulae in which a depletion of helium is observed. We find that in this case helium diffusion may be
considered as a binary process but cannot be decoupled from the structure computation. We present
an alternative method for studying diffusion and apply it to the central stars. We thus solve a station-
ary hydrodynamic model for a completely ionized H-He plasma, which takes into account consistently
the behavior of all the species. We find equilibrium abundance distributions very different from those
obtained according to the trace element approaches while helium and electron densities increase with
depth in the atmosphere, protons tend to decrease. However, preliminary studies of the stability show
that these are not the actual distributions.
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I. INTRODUCTION the effect produced by the modification of the diffusing

- species concentration during the evolution in Vauclair,
The problem of diffusion in the context of anoma- Vauclair, and Pamjatnikh (1974) and Vauclair ef al.

lous abundances in stars has been extensively touched on
(Chapman 1958; Michaud 1970; Vauclair and Vauclair
1979, 1982; Michaud et al. 1976; Vauclair and Reisse 1977;
Vauclair, Vauclair, and Greenstein 1979; Fontaine and
Michaud 1979). Generally the diffusion of a trace element
is considered, decoupling this process from the structure
equations. Moreover, the diffusion of the trace ions is
treated as a binary process, neglecting the contribution of
electrons (Aller and Chapman 1960; Vauclair and Vauclair
1982; Montmerle and Michaud 1976).

Structure models have been computed considering

(1978). However, in both cases, diffusion is treated in
the binary approximation. Besides, there is one work
(Noerdlinger 1977) in which the evolution of the struc-
ture is computed solving comnsistently the hydrodynamic
equations for the elements present, considering diffusion
in the multicomponent gas.

The assumption of binary diffusion has been also
relaxed in a group of papers which mostly deal with the
computation of transport coefficients. Noerdlinger
(1978) uses multicomponent flow equations to obtain
diffusion rates. A similar approach is applied to white
dwarfs by Muchmore (1984). He also calculates the dif-
fusion velocities in a multicomponent gas without taking

1. Supported by a Scholarship from the Consejo Nacional de the trace element approximation into account. A dif-

Investigaciones Cientificas y Técnicas.

2. On leave of absence at Centre de Physique Théorique, Ecole ferent treatment is carried out by Roussel-Dupré (1981)
Polytechnique, France. who computes the transport coefficients solving a Fok-
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ker-Planck equation for each component present in the
mixture. Montmerle and Michaud also take electrons
into account in order to compute the electric field, which
finally affects the thermal diffusion coefficient, but ne-
glect them in other processes. The equations derived in
their paper have been extensively used in the literature
for the study of chemically peculiar stars.

In the present work we are interested in the analysis
of helium diffusion in central stars of planetary nebulae.

Recent studies of the atmospheres of central stars of
planetary nebulae have revealed the existence of objects
that have helium abundances significantly smaller than
the solar one (Méndez et al. 1981; Méndez, Kudritzki,
and Simon 1983). This effect is observed in the stars with
higher surface gravities, which are presumably more
advanced in their evolution, and it may be attributed to
the gravitational settling of helium. This conclusion is
supported by the fact that the outward radiation force is
everywhere overcome by gravity and other thermody-
namical forces. Indeed, we have computed the forces
acting on helium using a grid of atmosphere models made
available to us by Kudritzki (1983). A description of
these models can be found in Kudritzki (1976), Kudritz-
ki and Simon (1978) and Méndez et al. (1981). In Table
1 the stellar atmosphere parameters for the two models
we analize in this paper are tabulated. We are interested
in those regions where the optical depth is greater than
unity. At this depth helium is mostly doubly ionized,
therefore, the radiation force is expected to be weak. We
have repeated the computation of the radiation force by
two methods. The first one is the one used in Vauclair
et al. (1979), the second one is that described in Mont-
merle et al (1979) (see Appendix C for more details). In
Figure 1 we can see that in the deep atmospheric layers
(1 > i) the acceleration due to the pressure and temper-
ature gradients averaged over all athe states of ionization
of helium (gg7) is always greater than the radiative ac-
celeration (gg) Therefore, one may conclude that the
gravitational settling of helium indeed occurs. However,
the underlying model which allows one to draw such a
conclusion is based on assumptions, like binary diffusion
on a background, which may not be valid in this case.

It is our aim to discuss the validity of the assumptions
of binary diffusion and diffusion over a non-altered
background. The analysis will not be completely general,
and, in some cases, we will limit ourselves to the physical
conditions that prevail in the central stars in which we
are interested.

The organization of the paper is as follows. In Section

TABLE 1
Model I Model I
Tegr € K) 75 000 75 000
log g (cm/seg?) 5.50 6.50
nge/ny 0.1 0.01

gravity (cm2/g)

-3 -12 -1

Fig. 1a, b. The acceleration due to the pressure and temperature
gradient, conveniently scaled, EGT and the radiative acceleration
ER computed by method 1 (curve labeled 1) and by method 2
(curve labeled 2) are compared. Fig. 1a corresponds to a model
with normal helium abundance (Model I, nye/n, = 0.1). Fig. 1b

corresponds to a model with anomalous helium abundance (Mod-
el II, nye/n, = 0.01). The differences between the radiative ac-

celerations computed by the two methods considered are well
within the uncertainty of the fitting formula used for method 2.
This difference is smaller for Model II, due to the fact that the
condition for using the fitting formula (eq. 10 of Michaud et al.
1979) is better satisfied. In both casesER is less than 30% ofEGT.

Il we analyze under what conditions these assumptions
may be valid and whether they may be applied to our
case or not. We also discuss the simplifications usually
made in the treatment of ionization and radiation. In
Section III we describe the method for studying diffusion.
We present a stationary hydrodynamic model for a gas
of electrons, protons and ions and solve the equations
for the central stars of planetary nebulae (Models I and
II) in the equilibrium and in the case of non-vanishing
diffusion velocitites. This hydrodynamic model is in the
spirit of Noerdlinger (1977), but it is time-independent.
We also describe some results concerning the stability
of the distributions. Finally conclusions are summarized
in Section IV.

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



. 85P

1986RMKAA. . 13. .

HELIUM DIFFUSION 87
1I. DISCUSSION ON APPROACHES TO .
THE DIFFUSION PROBLEM d, + kg AT _ (Ve — V) Nfp
This section is devoted to the discussion of the validi- dr n? D;,
ty of certain assumptions that are usually made in the
study of diffusion in stars. They may be listed as: n,n
i) diffusion as a binary process. = (Ve = vp) n? Dep_ (23)

ii) test atom approximation.

iii) negligible concentration gradients for the compu-
tation of equilibrium abundances.

As we have already pointed out, there are some works
in which these assumptions are relaxed. What we do in
this section is to obtain the conditions that must be ful-
filled for the assumptions i) and ii) to be valid, and check
if the usual arguments that lead to these hypotheses are
correct or not. In the computation of equilibrium abun-
dances, we restrict our attention to the case of the cen-
tral stars of planetary nebulae and analyze what may and
may not be done in this particular case. However, some
general conclusions may be obtained. We also discuss the
problem of ionization and radiation connected with dif-
fusion processes and give some qualitative ideas.

a) Diffusion as a Binary Process

The diffusion problem has usually been treated as a
binary process, neglecting the electron dynamics. (i. e.,
Montmerle and Michaud 1976). This assumption is based
on the fact that the diffusion coefficients for electrons
with respect to protons and jons are 40 times greater than
the diffusion coefficients for ions with respect to protons.
We will check this hypothesis for the simple case of a
completely ionized gas formed of electrons, protons and
ions in one state of ionization. We will assume one-di-
mensional geometry, which applies both to planar or
spherical symmetry, and electrical neutrality. The analy-
sis will be done as follows. We will start from the corre-
sponding general equations, impose some restrictions,
derive a “reduced” equation and compare it with the
binary case (eq. 2.7). We will thus obtain sufficient
conditions for the different hypothesis to be valid.

The general equations which relate the diffusion
velocities are (see Chapman and Cowling 1970)

dinT
T dr
n; n n;n
= (V= V) e — (V- V) e 2.1
1 P nzDip 1 € nzDie ( )
dinT nnp
d. +kT = _(v 7
4 dr (P 1) lep
n, n
~(p—V) —— (22)
n® Dy,

where

= T T T
4 +dy + d,=0, kT +kI +kT=0,  (24)

and
d ¢/n ng p
4= 4 _S) + (_s__z)x
dr \n n p
dnP f; P
____._§.+_..f.z;l:j, 2.9
dr P ppi

Supposing that D;, np/Dip n, >> 1, which holds for
Coulomb interactions and for a non negligible proton

abundance, after some algebra we obtain

2

~ (% -V =——D;, X
dinT T dinT
T —— e———
di + ki dr P P dr (2 6)
X D ~ " Dy n T
n. i
1+ _Pe i 1+ i
ie np Dpe n;

At first sight this expression seems to be independent
of the presence of electrons, since the ratio

3/2
Dpe 2 ml
1
Die mp

does not depend on electron variables. However, both d;
and d_ contain terms on the external forces acting on
all the species present. From (2.4) we see that electrons
also affect thermal diffusion. Thus, only when there are
no external forces acting on the electrons or when thermal
diffusion is not important, we can say that no electron
term will appear in the expression for the diffusion of
ions and protons. However, even in this case, equation
(2.6) does not reduce to the corresponding one to a
binary ion to proton diffusion which is

o p dinT
—(Vi—vy)= ED“’ <.1i+1<i o 27
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Consequently the smallness of the D;/D, ratio does
not suffice to reduce diffusion to the binary case.

Let us now suppose that the ion concentration is
negligible, n;/n <<1, and that ions do not affect electron
to proton diffusion. This assertion is equivalent to saying
that the electron and proton distributions are not altered
by the ion diffusion (test atom approximation). For this
last assumption to be valid it is necessary that the follow-
ing conditions hold:

n;n, dinT
IV =vp I — << Id, i —l,
P (2.8)
n; ne lenT
= Ve | =—  <<Idy+k l.
¢ dr

ie

In this way the electron and proton velocities are related
by

N 0 dInT
e\, —ve)—e-—li—‘_‘_'dp+kT ~
P l‘l2 Dpe d

where in this case is

n'znp+ne

Nevertheless, the ions affect these velocities through
the external force terms which appear in d; and d,.
Therefore, the ion contribution to Vp — Ve may ge 1gnored
only when F;/P is negligible.

Subsututmg v, obtained from (2.9) into (2. 1) we
obtain

n? D,
p
— (v — Vp) = X
ni np
~ dnT m D
X [di Ty Pkt (dp kT dm) . (2.10)
dr n, D dr
Provided that
Dy [ D np, << 1, 2.11)

we also obtain (2.10) from (2.6). However, in order to
neglect the influence of ions on proton to electron dif-
fusion it is necessary to also assume that

T dinT T dinT
d; +k, -dr_ << dp’e + kp’e -;—— (2.12)

Conditions (2.11) and (2.12) are equivalent to (2.8). We
can see that further restrictions must be imposed to
obtain (2.7). Binary diffusion is recovered supposing

n D dInT dinT
— g +kT | << 1 +kT — 1 . (2.13)
n, D, PP gr 1 dr \

This condition is not easily satisfied, since almost all the
terms in d; are proportional to n;, except those on the
external forces [see also that it must be satisfied together
with (2.11) and (2.12)]. Let us consider the case for
which the right hand side of (2.13) is mainly determined
by F;/P. If this term were of the order of d, the diffusion
velocityterms in (2.1) would be comparable to d_, in
contrast to condition (2.8). Consequently, a sufficient
condition for (2.13) to be valid is to require that

n; Dpe 1 dinT 7 dinT
——1q, | << 1d; +K] |~
pD‘e r dr
PP, LSRN
nN— . .
p L4 P dr

In the case for which thermal diffusion is dominant, si-
milar reasoning may be applied, leading to the sufficient
condition

n; D dInT dinT
—’———ld +kT = | << KT —~
n, D P dr dr

dinT

dInT
«,ldi+kiT—(-l—r——|<<ldp+kg . (2.15)

T

In summary, only if certain special conditions [such
as (2.14) and (2.15)] are satisfied is it possible to describe
the diffusion of ions as a binary process on a background
of electrons and protons, whose state is not modified by
the ion dynamics. This means that only in very special
cases can we compute the stellar structure model and
then study the ion diffusion in the test atom approxima-
tion, as it has been extensively done in the literature.
Such a situation is not reached if only Coulomb interac-
tions and a negligible ion concentration are assumed.
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Besides the analysis we have made based exclusively
on the general equations (2.1)-(2.3) we may also consider
the influence of the dynamical constraints on the dif-
fusion process. For instance, we may require hydrostatic
equilibrium, which implies the absence of a net mass
flux

Inmgvy=0 (2.16)

S

Moreover for a stationary model with no magnetic fields,
the total electric current vanishes

ZZ;engv,=0, (2.17)
S

which is satisfied due to the appearance of a small electric
field. For the special case of a three component gas
(2.13-14) relate the diffusion velocities as in equation
(2.22) of Noerdlinger (1977) by

n, m; — Z; m, N
Ve=— ——— Vp—
n, m;+Z;m,
m
~ 1-—=2z) %  (218)
n m;
n, mp+me n, m,
Vi=—— —————— V= —— — V. (2.19)
n m;+Z;m, j My

Using (2.18) and (2.19) we may calculate

_ Mp/mi* (m - Zimp)m; Dy (2.20)

n;/n, + (np mp/ne m;) Dy

which gives much less than unity for Coulomb interac-
tions. Therefore, in this case (2.1) yields (2.7). We then
may conclude that under conditions of hydrostatic
equilibrium and one-dimensional symmetry the ion to
proton diffusion is binary, however it is not possible to
decouple the jons from the dynamics of the other spe-
cies: all the abundances (n,, n, and n;) must be computed
together.

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System

b). Ionization and Radiation

The hydrodynamic equations for a multicomponent
gas may be obtained from Boltzmann equations by means
of the Chapman-Enskog method. This method applies
when it is possible to separate the collision processes
into slow and fast ones. The fast processes determine the
transport coefficients, while the slow processes appear as
thermodynamical forces (Andersen 1969).

Ionizing interactions must be considered as fast proc-
esses under local equilibrium conditions, thus affecting
only the transport properties of the medium. Therefore
the problem arises in determining the form of the trans-
port coefficients. A rather crude approximation can be
made considering their expressions in terms of collision
frequencies. In this case the ionization frequency »! must
be added to the Coulomb one, v°. For instance, the dif-
fusion coefficient between speciesiand j can be written as

— I

We see that the inclusion of this new frequency might
lead to a reduction of the diffusion coefficients. As col-
lisional ionization is most commonly produced by inter-
actions with electrons, the ratios Die/Dip and Dpe/Dip
may become of the order of unity, and treating diffusion
as a binary process fails. However, for the cases we are
interested in (T v 8 X 10* °K, ionization of Hell) the
ratio »!/v° is negligible. Therefore we shall work with
the diffusion coefficient due to Coulomb collisions.

The interaction of radiation with matter also affects
the hydrodynamic equations and the transport proper-
ties. In the deep atmospheric layers we are dealing with,
the diffusion approximation for radiation is valid. This
approximation leads to a modification of the total pres-
sure and of the heat conduction coefficient. The ques-
tion which arises is whether the radiation field can be
treated as an external force in the relations that yield the
diffusion velocities. In order to analyze this problem we
will start from the Boltzmann equation for the s species.
Let us first study bound-bound interactions, for which
the collision term can be put as

Zcfdvdw [o‘;; fl; (v -

j<i

—of fis(v)] F, +

. hy
chdvdw o?f’(v+ w) —
Bos mgcC

i>i

hy w\ B
mgC

(2.22)

A s
- o f‘s(v)] F,,
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where

fl =(f, ei/¥T)/ Z,

and where we have used momentum conservation. As we
shall see, spontaneous emission terms vanish. After a
straightforward calculation sketched in Appendix A,
(2.22) can be written as

1 of
— dvdwwx$ 1) —
ng mgC ov

(2.23)

The coefficient which multiplies the velocity gradient of
the distribution function in (2.23) represents the force
per unit mass FR, due to the spectral lines, acting on the
species. Therefore, in the case of bound-bound transi-
tions radiation interacts with each species as an external
force, which can then be put at the left hand-side of the
corresponding Boltzmann equation

of,  of of
—+v—= + (Fg+ FR) ==L (f) (2.249)
ot ox o ‘

where bound-bound transitions are excluded in the col-
lision term L(fs) and F takes into account gravitational
and electrical forces per unit mass. These results apply
also to photon to atom scattering and to free- free col-
lisions. However it is not clear that for bound-free transi-
tions one can split the collision term in order to get an
equation like (2.24). In the case of ionization and
recombination processes the collision term summed over
all states of ionization, yields contributions to both sides
of the Boltzmann equation. There is a contribution to
the external force, in which, besides radiation force, there
appears an integral on the distribution function of elec-
trons describing the force they exert on the atom of s
species. On the other hand, such processes contribute to
the transport coefficients, similar to other collisional
processes, through their interaction cross-sections.

c) Discussion of the Equilibrium
Abundances Calculations

This paragraph is devoted to the analysis of the influ-
ence on the determination of equilibrium abundances.
The importance of the d(Inc)/dr has been already point-
ed out in Vauclair er al. (1978), for the case in which
turbulence is present and the diffusion coefficients are
enhanced by a turbulent term. This is not our case where
we work with the usual coefficients due to Coulomb in-
teractions. Besides, we draw some conclusions about the

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System

validity of studying diffusion on a pre-computed model.
All numerical calculations present in this part are restrict-
ed to the case of the central stars of planetary nebulae
(Models I and II).

Let us consider the expression for the binary diffu-
sion velocity of an element (s) with respect to a given
background (b)

dInP

dlnc, __
—_ = S
R i S

— dInT

m
L sER (2.25)
T dr kT ’

+ k>

where the quantities appear averaged over the ionization
states of the given s atom

D = Zl:(Df nf/n),

kS = ? (k] D} nj/n Dy)

and the indices b and I refer to the background and ioni-
zation state respectively.

When equilibrium is reached, (2.25) vanishes. In order
to obtain the density distribution of the diffusing species
one should solve the differential equation

dinc, mg — dInP
— —— c)= k3 +
& ki RETRT
— dInT mg
+ kS =——-BGT(r 2.26
T ar  KkT(r) © (2:26)

However, if we neglect the dincy/dr term, asit is usual-
ly done (e. g. Vauclair et al. 1979, Montmerle and Mi-
chaud 1976), (2.26) reduces to an algebraic equation,
which may be readily solved once g, (c,) is given. In our
case for both methods we get gp (c;)=a (r)c;'’? (see
Appendix C). Therefore, the solution of the algebraic
equation is (Vauclair et al. (1979)]

Ceq/% = @R o/BGT)*- (2.27)

where CZ refers to the equilibrium concentration for the

q
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s atom, C® refers to the normal concentration of such
atom and gp, is the radiative acceleration for CJ
We have numerically solved the equation

dby my

2T Tro KT(r)

which is obtained from (2.26) by the substitution b: =cq

We have used a central finite difference scheme and se-

lected as the outer boundary condition for cg the value
given by (2.27) at that point. We have taken the values
of T(r), ggr(r) and a (r) from the Models I and II com-
puted by Kudritzki. Solutions of (2.26) and (2.27) are
compared in Figure 2. We can see that the density distribu-

tions are drastically different. This is a consequence of

the appearance of an exponential term in the complete
solution of (2.28), which comes from the homogeneous

T T T T
a)
6| i
4 -
2 B
o N
A
/-
- 2 ]
(3
n()
by 1 1 1 ]
o - -10
g T T T T T
=ﬂ
=~ L b _
o
°

13 -12 RS aM
Fig. 2a, b. Helium equilibrium density is plotted against column
mass. The curve labeled A refers to a solution obtained neglect-
ing concentration gradients. The curve labeled B refers to a solu-
tion of the complete differential equation (2.26) taking as the
outer boundary condition the value given by (2.27). Radiative
acceleration gp is computed by method 1.
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ms
gor(D) by=—— a(r) , (2.28)

solution, and which is not considered in (2.27). Besides,
this behavior reflects the fact that the radiative accelera-
tion is so small that ir cannot balance the effect of gravi-
ty. Therefore the equilibrium distribution is almost de-
termined by the gravitational settling of helium [which
corresponds to the homogeneous solution of (2.28)]. We
then conclude that in this case it is not possible to neglect
the derivative term in (2.26), no matter how small it may
be: the solution obtained through (2.27) is unstable,
in the sense that an infinitely small variation in the
concentration will give a distribution which diverges ex-
ponentially from (2.27) (see Elszgoltz 1973). We may
also conclude that, in general, when gravitational settling
prevails it is imposible to neglect the dincg/dr term in
the expression for the diffusion velocities.

We have also computed the density distributions
taking the observed values as boundary conditions. In
Figure 3, these distributions are compared with the pro-
ton and electron distributions. As the solutions of (2.28)
increase exponentially, the helium concentration be-
comes much greater than the electron-proton density,
violating the neutrality of the atmosphere. Therefore,
the proposed model is not consistent: it is not possible to
consider a background not affected by helium diffusion.

III. HYDROGEN-HELIUM DEEP ATMOSPHERE MODEL

The stellar structure equations (e. g. Chiu 1968; Cox
and Giuli 1968) which describe the envelope regions,
consider previously fixed abundances, that is, these
abundances enter as parameters of the specific model. In
this way the hydrodynamic equations reduce to those
corresponding to a one-fluid model. Besides, in the cases
where abundance anomalies appear, at certain stages of
the stellar evolution, one way of explaining these phe-
nomena is to invoke diffusion. The simplest way for
describing diffusion is to assume that the diffusing species
drift on a given structure. This background structure is
computed according to a model without diffusion. More-
over, further approximations are posed in order to
compute diffusion velocities and determine equilibrium
abundances. As we have discussed in the previous sec-
tion, the neglect of electron dynamics, or the neglect of
concentration gradients, may lead to erroneous results.
On the other hand, to decouple diffusion from the struc-
ture of the atmosphere may become inconsistent with
the basic assumptions of the model, for instance, the
neutrality condition may be violated. Therefore, one can
improve the analysis of diffusion by means of a structure
model which allows one to deduce all the abundances
simultaneously. As it has already been pointed out in the
introduction, works in this direction are those of Vau-
clair et al. (1974), Vauclair et al. (1978) and Noerdlinger
(1977). The basic equations of a consistent structure
model should be the set of hydrodynamic equations for
the species present. The most complete description would
be given by the solution of an evolutionary model which
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Fig. 3a, b. The density distributions of protons (P), electrons (E)
and helium (He, dashed line corresponds to method 2 and solid
line to method 1, these two curves cannot be distinguished for
Model II) are compared. Helium density is computed by solving
‘the differential equation obtained setting the helium diffusion
velocity equal to zero. (eq. 2.26). The outer concentrations are
taken equal to the observed values. The distribution of helium
differs from case B of Figure 2 due to the different boundary
conditions: while in Figure 2 these conditions imply that the
derivative of cg vanishes at the boundary, in Figure 3 it is dif-
ferent from zero. Neutrality is clearly violated when one com-
putes helium abundances without taking into account the possible
modification of the background model (an electron-proton
plasma) Fig. 3a corresponds to Model 1 (“He/“p =0.1;logg=5.50)

and Fig. 3b corresponds to Model II (ny e/np=0,01; log g=6.50).

takes into account, the effect of diffusion as in Noerdlin-

ger (1977). However, this program is beyond the scope
of this work and so we propose a simpler, two step
analysis: (i) the computation of a consistent stationary
structure model, (ii) the stability analysis of the struc-
ture, which in turn may yield the characteristic growth
rates of the instabilities. In this way we can also obtain
the equilibrium distributions, which may not be the
actual ones if the structure turns out unstable.

In the subsequent paragraphs we describe the basic

© Universidad Nacional Autonoma de México

equations of the model and show the results obtained
for the central stars of planetary nebulae (Models I and II).

a) Model Equations

In what follows we shall write the stationary model
equations for the subatmospheric layers ( > 1) where
radiation can be treated in the diffusion approximation.
We consider an ideal non-degenerate gas composed of
electrons, protons and helium nuclei, electrically neutral,
with spherical symmetry and hydrostatic equilibrium.
We treat the relative motion of the three species as a dif-
fusion process, and suppose that all three species are at
the same temperature. We do not make any assumption
on the helium to proton concentration, but rather obtain
it as a result of the model computation. Therefore, the
general hydrodynamical equations read as continuity

= %) =0, (3.1)

hydrostatic equilibrium

d a Go M
dnrtp — nkT+ = T)=— L 32
P dM, 3 ) r? 32)
energy balance
2=0 , 33
am, * 9 (33)
Poisson’s formula
a T (3.4)
dM, 4nr?p
Maxwell equation
J =en, v, +2eny, vy, —en, v, =0. 3.5)

In this set of equations there is only one continuity equa-
tion, because the diffusing fluxes are all proportional
[see (2.17)(2.18)]. In order to obtain a closed set of
equations the following relations must be satisfied

(i) electrical neutrality
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me 0 P field in terms of the other thermodynamical forces. The
n,=2 \1+5 mp *m (3.6) calculation is straightforward, as the electric field enters

(ii) constitutive relations for the diffusion velocities
(Chapman and Cowling 1970)

Ay d
Vs'=—41rr2p—z: (ngkT) —
< kT | dM,
Fs dinT
——7 -D : 3.8
47rp S am. (3.8)

r

the explicit form of the diffusion coefficient Ay is given
in Appendix B. F; includes electrical and radiative forces.
As we are dealing with a completely ionized gas, in which
no transformation of the species takes place, we can sup-
pose that radiation affects diffusion as an external force.
Besides, as the radiation force on protons and helium
nuclei is much less than the radiation force on electrons
Ffv we take F ?{ equal to the total radiation force. Thus,
we put

FS = - ar 39
RO 12er2p  aM, e

This is a crude estimation, but does not introduce errors

greater than 1%.
(iii) the relation defining the energy flux q (which we
suppose to be due to radiative and electron heat conduc-

tion) is

dT

3.10
™ (3.10)

q= e +2R)
anrtp  ° .

where Ay is related to the Rosseland mean opacity X g by

For a detailed description of the transport coefficients

and the atomic processes considered see Appendix B.
Further simplifications may be done. First, we can

eliminate (3.5) by obtaining an expresion for the electric

linearly in the diffusion velocities. Moreover, (3.1) and
(3.3) can be immediately integrated, leading to

r? n, v, =const. =K 3.11)

2 q=const. =U . (3.12)

With all the assumptions and simplifications described
above, we have reduced the original set of equations to
another system of four equations (3.2, 3, 11, 12) on the
variables ng, p, T and r.

Furthermore, as we have obtained a set of first order
differential equations, we must state the boundary con-
ditions by imposing values at one point for the four in-
dependent variables and for the two constants K and U.
K is a free parameter which determines the values of the
diffusing fluxes. For the first calculations we will take K
equal to zero (equilibrium case). This means that the
species do not diffuse. U is simply related to the lumi-
nosity L by

As we are not solving the complete structure of the star,
we do not have reliable conditions to impose at the inner
boundary of the envolope. If we could do so, we would
obtain the density distributions at the surface as a result
of the model and would be able to compare them with
the observed ones. On the contrary, we take the values
given by an atmosphere model (Kudritzki 1983) which
adjust the observations, as boundary conditions and
integrate the equations towards the center of the star.

b) Equilibrium Distributions

The models we have computed differ substantially
from those which are based on the assumption of chemi-
cal homogeneity, that is, those which take main results
in Figure 4 (for a normal surface helium abundance in
Figure 4a and for an anomalous one in Figure 4b), where
the species densities are plotted. In both models, com-
puted with vanishing diffusion velocities (K =0), we
observe that the star envelope is stratified. While helium
and electron densities increase with depth protons tend
to decrease in the inner layers of the atmosphere. This
behavior of the helium density is similar to the one
obtained in Section 2.3, when we solved the differential
equation (2.26) determined by the expression of the
helium diffusion velocity. In that case neutrality. was
clearly violated due to the fact that the helium density
was computed independently from the background
model. In this case, as all the distributions are computed
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2.0 -
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-13 T2 =T 10

[oXo} N | | ] | |

—14’ -13 -12 log M
Fig. 4a, b. The density distributions of protons (P), electrons (E)
and helium nuclei (He), solutjons of a consistent hydrodynamic
model with vanishing diffusion fluxes, are plotted against the
column mass. Fig. 4a corresponds to Model I (ny./np=0.1;log
g=5.50) and Fig. 4b corresponds to Model II (nge/np=0.01;
log g=6.50). For both models, the envelope structure is clearly

stratified showing the occurrence of a kind of gravitational set-
tling.

simultaneously, the neutrality condition determines that
the increasing of the helium density must be compensa-
ted by a depletion of the proton density. That is why we
obtain such a stratified structure. We could not continue
the computation for deeper layers because, as the proton
density became so small, it would be necessary to include
metals in the model. Besides, some numerical problems
appeared at those layers. What we have obtained is the
equilibrium structure compatible with the observations
and the assumptions of the model. We must remember
that it may not correspond to the actual one because of
instabilities. Besides there is no reason for supposing that
diffusion has already ceased at these stages. Moreover
there are some simplifications (such as considering a gas
of protons, ions and electrons) which finally affect the
results. In spite of these limitations, it is interesting to
compare it with the equilibrium concentrations derived
in Section II. These stratified models show that diffusion
of helium in the central stars of planetary nebulae cannot

be analyzed in the test atom approximation; it must be
studied together with the evolution.

¢) Calculations with Non-Vanishing
Diffusion Velocities

We have also computed envelopes with K # 0. We
have fitted our model distributions for the deep regions
of the atmosphere with Kudritzki (1983) outer atmos-
phere with Kudritzki (1983) outer atmosphere models, at
7 = 1. The results are shown in Figure 5. In these models
the depletion of the proton concentration is slower than
in the former ones, but the tendency to deposit helium
in the deep envelope is still maintained. Therefore, for
both cases, a kind of gravitational settling is observed.
For non-vanishing diffusion velocities the stratification is
less severe. One might therefore suppose that trying dif-
ferent values for the diffusing fluxes would yield a struc-
ture where all the densities increase together. Let us try
to determine under what conditions this situation will
occur.

IIT"ITT711/'I
a) -

1 )
log M -2

Fig. 5a, b. The density distributions of protons, electrons and
helium nuclei, solutions of a consistent hydrodynamic model
with non-vanishing diffusion velocities are plotted Fig. Sa which
corresponds to Model I (ny./np=0.1; log g=5.50) and Fig. 5b
corresponds to Model II (ny./np=0.01; log g=6.50). In this
case the depletion of the proton density is slower than in Figure
4. A kind of stabilization of this density may also be seen.

-14 -13
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As all the densities are related by the condition of
neutrality (3.6-3.7), the density gradients are also inter-
related. In this case the condition

dne <0 dnge <0
M, dM,
dn d
dM, dM,;
is similar to require that
1+ m/2m,
1+ mg/m,
/
me dne dp I
- — = > .
(1 T om )™M, /M, 72 G.13)

Condition (3.13) is clearly a severe restriction which is
always satisfied for the chemical homogeneous structure
models. However, it is easily violated when one is deal-
ing with the solution of a consistent set of hydrodynamic
equations. It is always possible to choose initial condi-
tions which satisfy (3.13) in order to obtain monotonical-
ly increasing distributions. However, this behavior is
only locally guaranteed. In some sense, the density dis-
tributions in the deep layers are weakly sensitive to the
boundary conditions. We must also remember that condi-
tion (3.13) applies to a model composed of electrons,
protons and helium nuclei; this fact limits the applicabil-
ity of its consequences.

d) Stability

We have studied how the structure would evolve if
the electron density and the temperature were altered,
maintaining the other conditions of the model (hydro-
static equilibrium, electrical neutrality, spherical sym-
metry) invariant. We have only analyzed the linear stabil-
ity as follows: we have taken the complete set of hydro-
dynamic equations for the non-stationary case and
imposed the restrictions of spherical symmetry, electrical
neutrality and hydrostatic equilibrium. Further, we have
written the electron density and thoe temperature as:
n,=n, +8n,;T= T° + 8T, (where n, and T correspond
to the stationary distributions previously computed) and
have linearized the equations in the small variations &n,
and 8T, while considering also the variation of the trans-
port coefficients due to their dependence on n, and T.
Finally we have proposed an e¥! dependence for 8n,
and 8T and obtained the characteristic growth frequen-
cies w, which determine if the stationary structure is stable
(w <0) or not (w>0). In our case we have obtained
positive frequencies. Consequently we may say that, ac-
cording to these results, the equilibrium distributions of

III. 2 are not the actual ones. Therefore, a non-linear
analysis is needed in order to obtain the stable structure.
However, this is not a complete study since it does not
consider the possibility of the appearence of convection
(the condition of hydrostatic equilibrium is still mainta-
ined). Besides these results are not the definitive ones,
due to the limitations of both the model and the method.
We think that they must be confirmed by another
method, if possible, by an analytical one.

IV. CONCLUSIONS

We have discussed the main assumptions of the usual
approaches to the study of diffusion. We have first ana-
lyzed the consequences of the smallness of the D; /Dpe
ratio and of a negligible ion concentration for a three
component gas. We have also obtained sufficient condi-
tions for treating diffusion as a binary process and for
neglecting the ion dynamics in the structure computa-
tion. Electrons may be neglected only in the case of
very restrictive dynamical conditions, and their impor-
tance is due to their influence on the external forces and
thermal diffusion.

Further, we have briefly studied the effect of ioniza-
tion and radiation on diffusion. Ionization and radiation
processes in which three or more species are involved are
difficult to treat in the hydrodynamic approximation.
For local chemical equilibrium conditions, ionization
only affects the diffusion coefficients. This effect may
only be important when the ionization and Coulomb fre-
quencies are comparable. Nevertheless, detailed studies
of the Boltzmann collision term are needed in order to
determine the expressions of these new coefficients.
Radiation affects diffusion velocities through an external
force term for bound-bound and free-free transitions or
electron scattering. For processes which involve a trans-
formation of the species (bound-free transitions) radia-
tion also modifies the transport coefficients. Also in this
case a deeper analysis is needed. However, the difficulties
encountered in these topics may be overcome by the
construction of specific models for each case.

We have then discussed the computation of the equi-
librium density distributions. The determination of
equilibrium abundances may be erroneous when one
neglects the concentration gradient in the expression of
the diffusion velocity. If we take it into account and solve
the complete differential equation we obtain a complete-
ly different equilibrium concentration. Moreover, this dis-
tribution does not satisfy the neutrality condition. In this
way we may see that the equilibrium abundance of the
diffusing species cannot be determined independently
from the model computation.

We have therefore presented a method for the analysis
of diffusion. It consists of the computation of a station-
ary structure model and the study of its stability. For
the calculation of the structure we have proposed a
consistent hydrodynamic model which determines all
the densities simultaneously and which is adequate for
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the physical conditions prevailing in the central stars of

planetary nebulae. The main feature of the model is the
fact that it does not take the concentrations as parameters
but obtain them as results of the computation. We have
solved the equations for two central stars of planetary
nebulae. The structure obtained in both cases is com-
pletely stratified: while the helium density increases
rapidly into the star, a depletion of the proton density
is observed. We have also found that only under very
restrictive conditions can the densities increase simulta-
neously. Even if these conditions are satisfied for the
boundary distributions, the solutions of the hydro-
dynamic equations may evolve in such a way that these
conditions are then violated. The stratification we obtain
is due to the fact that helium sinks, as gravity overcomes
the outward radiation force everywhere. Therefore, in
order to maintain a neutral envelope, the proton density
decreases (as it is stated in Noerdlinger 1977). The oc-
currence of this stratification is also a strong argument
against the study of helium diffusion over a non altered

background. Returning to the case of the central stars of
planetary nebulae, preliminary studies of the stability of

these stratified envelopes show that they are thermally
unstable. This means that the structures obtained do not
correspond to the actual ones and that other phenomena
must be considered in order to obtain a reliable descrip-
tion. An improvement of the stability analysis together
with the study of the possible appearance of convection
is needed. Convective and turbulent motions may mix
the stellar matter competing with diffusion processes. In
such a case the envelope structure would be completely
different from the stratified one.

We are grateful to R.H Méndez for suggesting us this

work and for helpful discussions. We also thank R. Ku-

dritzki for making available to us the atmosphere models
used in this study.
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APPENDIX A

CALCULATION OF THE BOLTZMANN
COLLISION TERM FOR BOUND-BOUND
TRANSITIONS

The collision term for bound-bound interactions be-
tween the s particles in the i-state of internal energy and
radiation can be put in the form:

Zlfd”dWCFu (oj‘?fi V_ﬂ wl —
j<il mgC

—ﬁﬂm)+
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; hy
+Z fdvdwcFv(aﬁ vt — w] -
i>i

—¢Qm), (A-1)

where only induced emission is considered,
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; _ -€:/kT -€:/kT
st w)=f, (V) e €5/ |Z nis =11_s_e__1__ (A-5)
Z

and w is the direction of the interacting photon.
Imposing the momentum conservation condition,
which reads

. hy .
v+— w=v, (A-2)

s
m,C

for the first summatory (j + v = i transitions), and

LA (A-3)
S msc S

for the second summatory (i +» %= j transitions), and
making an expansion of f5 around v‘s (small particle mo-
mentum variation), we obtain

| i of .
Zlfdvdwcpr[ﬂ. w ok g () X

i>i m. ov
X (off e™(er /KT _ ojﬁ)]e'ej/” Iz (A4

where we have introduced the definition of the specific
intensity

I,=hucF,

The energy difference €;—e; is equal to hv.

Taking into account that for the Boltzmann distribu-
tion of internal states the number density of s particles
in the i-state n§ is related to the total number of s parti-
cles (in the same state of ionization) by:

and that for the diffusion approximation is

2: i E _2: i A, -hv/kT
— ns °ij = ns oji e (A-6)
i ij

i>j

The collision term is reduced to

A I, (1 e hv/kTy x

ng mge v

X xXeydvaw , (A7)
where we put

xi‘ )= E njS a’.’} . (A-8)
it

xL is the opacity in the lines for the » frequency. There-
fore, the collision term can be put in the form

_ (A9)
ov
with
R 1
FR = Ixywl, dvdw (A-10)

ng mgC

It is not necessary to consider the spontaneous emis-
sion processes, because for isotropic opacities the integral
over the photon directions (dw) is zero.

APPENDIX B
EXPRESSIONS USED FOR THE TRANSPORT
COEFFICIENTS AND THE OPACITY

a) Diffusion Coefficients
The diffusion coefficients Ag are calculated by
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2
(n, ) 1 n.n, 1 n, Ny, 1 »
- e
n D, n? Dy n? D, he
n.n n, \2 1 n, n
A= e2 b [: Iy . b 2He D] o,
n pe n. PP n P He
2
n, ny 1 Np Nye 1 (nHe> 1 »
- He
n’ De He n? Dp He n Dy He
ae pp %ye 0

and a(ng n,/n? Dy,) is the cofactor of the Ng n,/n Dst
term in the determinant A. The D, are the binary coef-
ficients for Coulomb interactions

3 2kT (mg +my) 2
D= —
" 16n T mg m,

2kT 1
X (5 ., (B-2)
e*Z, Z, [ 4de2]
Inf1+ ———

Z,7Z,¢?

where d is the Debye length d =
The Aq; satisfy the relation

Zngmg A, =0 . (B-3)
S

b) Thermal Diffusion Coefficients
We calculate Dg by (see Chapman and Cowling 1970)

kT '
ane’Tn 7} |
1

where o, = — 1.608 , aye, =10.61 .

¢) Electronic Conduction Coefficient

We calculate the electronic conduction coefficient by

15 n k3/2 TB/ 2
A = £ (B-5)

—_— 1/2,.4
4vzm M ¢ 3y (de> n,Z?

i Z: e

1

d) Radiative Heat Conduction Coefficient

We calculate the radiation heat conduction coef-
ficient by

2
87 ([ h 1
= [ 2)
R 3<c) KT?

’ v* dv ‘
. B-6
' J; (/KT — 1) (1 - e™M/kT) 5 () (®6)

" e) Opacity and Radiation Force Calculations

The atomic processes considered for the opacity and
radiation force calculations are

i) bound-bound transitions for H I and He II.

ii) bound-free transitions for H I and He II.

iii) free-free for H II and He II.

iv) electron Thomson scattering.

For the computation of the H I opacity we consider
an atomic model with four bound states and the contin-
uum and for the He II opacity a model with six bound

T _ NN states and the continuum. We compute these coefﬁcnent
by = zj e , (B-4) according to Cox (1968).
n
APPENDIX C

CALCULATION OF RADIATION FORCES

The calculation of the radiative acceleration g is
performed by two methods. The first one is the method
used in Vauclair et al. (1979). The only suppositions
involved in the derivation of their equation (10) which
we use, are:
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ii) Smooth behavior of B, and x,, (R) (part of the to-
tal opacity not due to the d1ffus1ng element) at the vicin-
ity of the line frequency. Here we only consider the line
frequency. Here we only consider the contribution due’
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to the force on the lines of He II. Therefore the final
average over the states of ionization reads:

8R (He) = gr (He IT) DHe ll,p/nHe DHe ()

The second method is the one described in Michaud
et al. (1979). We use their fitting formula (17) along with
their equation (7). This expression is already averaged
over all the states of ionization and also takes into ac-
count the effect of ionization in the momentum transfer.
It applies to a wide range of stellar parameters and dif-
ferent helium to proton concentrations.

From Figure 1 we can see that the second method
gives a higher g value than method 1. The origin of this
difference may be the same that the one described in
Michaud et al. (1979): method i does not consider the
photoionization of He Il which is responsible, among
other things, for the overestimation of the radiation force
in method 2.

Concerning the variation of gr with concentration,
we see that the expression given by method 2 has an ex-
plicit cs"” % dependence. As stated in Michaud et al.
(1979), this behavior may be understood by saturation

effects (though they also note that, for higher tempera-
tures, gg is less sensitive to C). The ¢ dependence of
gg for method 1 is more complicated, though it may be
simplified in certain cases. We have compared the opacity
due to the line of interest x; with x,, (R) at the center
of the line and see that the ratio x /X, (R) is not always
much greater than unity. Nevertheless, the condition
XL/X, (R) applies for those lines which determine the
total radiation force. We have compared g obtained by
adding equation 10 of Vauclair et al. (1979) over all the
lines of interest with the simplifying formula

- 1 87 \ o
R T/ mpn \ 3h% ¢

(o) et x NE
or (ehv/kT _ 1)2 .\xv(R)

and found a very good agreement: they differ in a 10%
at most, the major differences appearing at the deepest
layers. Therefore we may consider a c;-1/2 dependence
for both methods.

GLOSSARY

a Wien’s law constant;a = 8n°k%/15h3 ¢3 .

c light velocity.

Cs s species concentration; ¢, = ng/(n, + np).

Dy, binary diffusion coefficient between species s and t.

D; binary diffusion coefficient between the s atoms in
the I state of ionization and protons.

D, binary diffusion coefficient for the s particles aver-
aged over all the states of ionization.

D;r thermal diffusion coefficient.

A, diffusion coefficient between the s and t species.
¢ electronic charge.

§ internal energy for the j state.

f 'S (v) distribution function of the s particles in the in-
ternal energy state.

fs (v) distribution function for the s species; f; W)=
z fsi (v) where the sum must be performed over all
1
the bound states.

F, photon distribution function.

F external force per unit volume acting on the s species.
F, external force per unit mass.

ggT acceleration due to the pressure and temperature

dient kT i;dlnP +l—(s_ dlnT)

gradients; =— -— ] -

. gGT my P dr T ar

8R , radiative acceleration on an s particle in the I state
of ionization.

gf{ radiative acceleration averaged over all the states of
H H 3 v oS = S S .8
ionization; gg = ? 8ol D nl/n D, .

gk = (m /o KT) g}
gcT = (m He/p kT) 8GT -
I, specific intensity; I, =hvc F, .
J electric current.
k; p pressure diffusion coefficient for the s atoms in the I

’ m

state of ionization; kS = — —Z, -1 .
i Lp mp

k;,’r temperature diffusion coefficient for the s atoms in

the I state of ionization; kj , =2.65 le + 0.805
2 i
@ -z).

k; averaged pressure diffusion coefficient;

_— N

n
kS =3 1 505
p l_n—lel,p/DS
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kT averaged temperature diffusion coefficient
E-—- D} ki 1.7/Ds:

k: thermal diffusion coefﬁclent related to D;r by

i
A¢ electronic heat conduction coefficient.

T
D, -zj:A,j kT.

AR radiative heat conduction coeffcient.
mg s species mass.
M reduced mass.
T
M, =4nfdrr?p.
(]

M=1- Mr/ M*
ng number density of the s species.

n} number density of the s atoms in the I state of ioniza-

tion.,
n total number density of particles.
w photon direction,
P total pressure.
q energy flux.
r radial spherical coordinate.
p total density.
p, density of the s species.
oi‘Ji‘ absorption cross section for i j transitions.

o}J? induced emission cross section for j - j transitions.

T total temperature.

v s species diffusion velocity.

Z partition function for the s particles.
Z electric charge of s species.
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