1987RWKAA. . 14. . 5731

Rev. Mexicana Astron. Astrof., 14, 573-586 (1987)

RADIATION HYDRODYNAMICS IN ASTROPHYSICS

Miguel H. Ib&fiez S.

Universidad de los Andes
Venezuela

RESUMEN. A partir de las ecuaciones generales covariantes de la Hidrodi-
nimica Radiativa (RH), se analizan sus formas particulares tanto en sis-
temas de referencia inerciales como en sistemas de referencia en comovi-
miento con el fluido. Se discute la importancia, en Srdenes de magnitud,
de los diferentes términos en dos regimenes limites de interés en astro-
fisica: (1) En el régimen de flujo radiativo libre (FSR) durante esca-
las temporales caracteristicas del flujo radiativo y del flujo hidrodind
mico. (2) En el régimen de difusidén, estitico (SDR) y dindmico (DDR).

Se clasifican los flujos radiantes en base a tres parametros adimen
sionales: La razdn entre las densidades de energia de la materia y del
campo radiativo R, el nlimero de Boltzmann Bo y el nlmero de Reynolds ra-
diativo Reg.

Se discuten dos clases generales de soluciones: Lineales (propaga-
cidén y estabilidad) y no-lineales. Se sefialan algunos problemas de la RH
no resueltos y de creciente interés en astrofisica.

ABSTRACT. Inertial and comoving - frame equations of Radiation Hydredy-
namics (RH) are analized, starting from their general covariant form.
The relative importance of their different terms, in two limit regimes
of interest in astrophysics, is discussed: (1) in the free-streaming re
gime (FSR) during radiative and fluid-flow time scales; (2) in static
(SDR) and dynamic (DDR) diffusion regimes.

The discussion is carried out with the help of three dimensionless
parameters: the ratio between material and radiation field energy den-

sity R, the Boltzmann number Bo, and the radiative Reynolds number ReR.

Two kinds of general solutions are discussed: linear solutions (sta
bility and wave propagation), and non-linear ones. Several open ques-
tions of increasing interest in astrophysics are also examined.

Key wonds.: HYDRODYNAMICS

I. INTRODUCTION.

Generally speaking, radiation has been considered as playing two different roles in
Astrophysics: The passive role (diagnostic), in which the physical structure of the emitting ma
terial is assumed to be known (atmospheres in hydrostatic, radiative and steady-state statistical
equilibrium) and the radiative transfer equation is solved by means of well known analytical or/
and numerical techniques, according to the particular problem at hand (Chandrasekhar 1960; Mi-
halas 1978). In the active role, on the other hand, radiation is tied to the dynamics of the ma
terial, mainly because it transports energy and momentum, in sucha way that one has to deal
with radiating flows (Pomraning 1973; Mihalas and Mihalas 1984, hereafter MM; I.A.U. Collogquium
82, 1985).

The formal problem one has to deal with in radiation hydrodynamics (RH) is to deter
mine the following parameters, as functions of position r and time t: the material density p,

pressure p, temperature T, energy density per unit mass e and the three components of the veloc-
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ity v; the radiation energy density per unit volume E, three components of the radiation flux F,
and six independent component of the radiation pressure tensor Pij- i.e., a total of seventeen
unknowns. For the solution of the above problem, there are only eleven equations: the material
equation of continuity, the energy equation, three components of the momentum equation, and two
material constitutive xelations (one equation of state and one caloric equation of state); the
radiation energy equation and three components of the radiation momentum equation. In what fol-
lows, the notation used by Mihalas and Mihalas (MM) will be used with only minor changes. Usual-
ly, in order to complete the number of equations required to determine the seventeen unknowns,
six closure relations relating Pij with E have to be determined by an iterative procedure, or one
has to give them as ad hoc assumptions. In addition, appropiate boundary and inicial conditions
have to be given.

There is no hope of solving the problem analytically even in the "most simple" case
of one dimensional radiating flow (eight unknowns related by eight relations, five of which are
differential equations), and powerful numerical techniques have been developed (Winkler and Nor-
man 1984; MM; and references therein) to work out particular problems. On the other hand, there
are several approximate forms of the exact equations whose solutions are quasi-analytical. These
solutions are sufficiently accurate in certain limit regimes, provide a great deal of physical
insight and may be used as entry or testing solutions of numerical calculations. However, one
must be aware of their exact scope and limitations in order to avoid misapplications which are
frequently found in works on the subjet.

This talk will be concentrated on the discussion of the self-consistent radiation
hydrodynamic equations (RHE), several useful approximate forms, and their solutions, in limit
regimes of interest in Astrophysics. Several open questions for further research will also be
indicated. The task of preparation has been inspired and guided by the Mihalas and Mihalas re-
cent monograph (MM) which surely will soon become a classical work on the subject.

It isapleasure to express my thanks to Professor D. Mihalas and Dr. B. Mihalas for
providing me with a preliminar version of their outstanding book and other very interesting pre
prints, and for stimulating conversations and private communications.

II. RADIATING FLOWS LIMIT REGIMES.

If £ is the characteristic linear dimension through which the physical quantities
defining the state of the fluid change appreciably, and A, is the characteristic photon mean
free path, i.e. A, = X“l, X being the opacity, two well known limits for the photon transport
may occur: the free streaming regime (FSR) if Ap/ﬁ > 1, and the diffusion regime (DR) if
Ap/ﬂ << 1.

The characteristic times associated with the above radiative transfer regimes are:
the free streaming time tg and the diffusiontime tgq given by
e =%, ty = (XDt = S5 (1)
s c ' d s r
where c¢ is the speed of light.
On the other hand, the characteristic fluid-flow time scale is given by

te = — . (2)

From the above scale lengths and time scales, one may distinguish four different re
gimes: the FSR (Ap/ﬂ 2 1) in a free streaming radiation time scale tg and in a fluid-flow time
scale tg. The DR~ (A /<< 1): the static diffusion regime (SDR) if tg << tg (or v/c << AP/Z),
and the dynamic diffusionregime (DDR) if tg 2 tg (or v/c 2 AP/Z).

The relative importance of the radiation in determining the local properties of the
radiating fluids is measured by the dimensionless parameter

Poeo (3)
Eo
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and the relative importance of the material enthalpy (hy) flux to the radiation flux F, is mea-
sured by the Boltzmann number Bo,

_ Povhy _ enthalpy flux
Fy radiation flux °

Bo (4)

The subindex zero means that the respective quantity is measured in the comoving (proper) frame.

] It is easy to verify that, to an order of magnitude accuracy [see equation (34) bel
low

Dr in FSR,

Bo = (5)

© (f;p)a in DR.

Therefore, in FSR, even when R >> 1, Bo could be less than one if v/c << 1 (non relativistic
flows), i.e., the radiation flux dominates the enthalpy flux even when the radiation energy den
sity (Eg) is smaller than the material energy density (pgeg) . This conclusion also applies in
SDR because there (vf/cA_) << 1. However, in DDR for which v&/cA_ could be >> 1, Bo < 1 if R<< 1,
i.e., the radiation flux dominates over the enthalpy flux only ig the radiation energy density
is greater than the material energy density.

Although the main interest in this talk is centered on the discussion of the RHE
up to terms of the order v/c, some noteworthy remarks on radiative viscosity will also be made
(& complete discussion on the subject can be found in Mihalas 1983 and MM). So, the radiative
Reynolds number Regp which measures the relative importance of the radiative viscosity affects
with respect to the inertial forces is defined by

povl ey pvE Ay (e
ReR=ﬁ—R & (g; E, ¢ (x;)(;)(

Pov?
E, ) (6)

where pR = Ap Eo/c is the coefficient of radiative viscosity, and t, = Ap/c is the photon flight
time. ~

Typical values of R and Bo in several radiating fluids of interest in Astrophysics,
are given in Table 1.

III. COVARIANT FORM OF THE RADIATION HYDRODYNAMIC EQUATIONS.

According to Mihalas and Mihalas (MM), the covariant form of the dynamical equations
of the radiation field is
aB o
R;B = -G, A (7)
af .
ROLB being the covariant derivative of the radiation stress-energy tensor R defined by the re-

14tion -

8 %—J av ¢ dw I(n,v)nanB. (8a)
o
More specifically,
E T
R = . , (8b)
c F P

E, F, P being the radiation energy, radiation flux and radiation pressure tensors, respectively,

which are given by -

1 am
- = = — 9
E == I av ¢ dw I(m,v) = 3, (9a)

[e]
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T A BLE 1

Order of Magnitude of R and Bo in Several Radiating Flows

Object

R Bo
center 5x102 1072
photosphere (h Vv 0) 6x10" 2
Sun cromosphere (h v 103km) 10! 4x10"*
corona (h v 4x103%km) 7x10" 3 3x10 °
flares 10~ 10* 10 102
Aczretion Flows on in the shock wave 10:“ 10::
Prots stellar Objects infalling material 1073 10
7 -4 -5
- at £ v 4x10’cm 10 10
Jets (S5433) at £~ 7x10™ cm 7x10° < 10°
solar at 1.A.U. 3x10”° 10710
Stellar Winds massive windsin 0 stars 107° 5x10° 8
massive cold winds in I-II LT 1-10 3x10” %
stars. :
-3 2 -5
Supernova (type II) 10 -10 10 "-10

Accretion Flows on Compact -1 5 _
Objetc (Neutron stars, BH 10 ~10 110
and White Dwarfs)

on the accretion disk 107" 1078
Active Galactic inner part of de a.c. << 1 << 1
Nuclei outer part of de a.d. >> 1 >> 1
in the wind 107° 10710
Cooling Flows in Clustersof Galaxies 102107 10~ 210"
-9 -1y
Early Universe z 2 150 s1lo <10
(o]
F = J av ¢ dw nI(n,v) , (9b)
! ‘
o0
. 1 Lo - :
pid - EJ av ¢ aw n'n® T(njy), (9¢)
o - \

where the dependence of all quantities on position r and time t is understood and has been drop
ed. When the respective gquantities have/not been integrated with respect to frequency V they
will be denoted by E(V), J(V), F(V), and so on.In the above relations, I(n,V), dw and n* are:
radiation intensity in the direction of the unit vector n, element of solid angle, and the four
vector (1l,n), respectively. c* 1s the radiation fourforce density defined by

¢ = -—J) av ¢ aw [Xm,vVIm,v-nn,v] , | (10a)

i 1

S i av ¢ daw [X(n,\))I(n,v)—n(n,v)]ni, (10Db)
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where X (n,V) and n(n,v) are the macroscopic opacity and emission coefficients per unit volume,
respectively. Hereafter the greek indices run as 0,1,2,3, and the latin indices as 1,2,3. A
four-space with coordinates x = (ct,r) and signature(-; +,+,+) is assumed.

On the other hand, the covariant form of the material dynamical equations is (see

MM)
Q.
M.g = £, (11)
o , . . . . o o,
M., being the covariant derivative of the material stress-energy tensor M, and f the four-
fogce density vector given by
A
o fev+ie
£ =y (= £), (12)

where f is the ordinary force density, € the rate of energy input from non-mechanical sources
and

The stress-energy tensor MOLB for an ideal fluid is given by (Thomas 1930; see also Taub 1978
and MM) :

h

MeB p,(1+=2 )v"‘vB + pogO‘B , (13)

c

where a
v o= Y(cr V),
of . .

and g is the metric tensor.

B

Explicit forms of Mu for non-ideal fluids are given by Weinberg (1971), and Green-

berg (1975).

A radiating flow can be considered as the material flow modified by the radiating
four-force, i.e.

M?E A T (14)
An equivalent expression derived from equation (7) is
e T (15)

i.e., a mixture of matter and radiation under the action of the external four-force fa (MM) .

In summary, the eleven equations which have to be solved for radiating flows are:
the material continuity equation

o
\% = H
(P );u 0 (16)
the equation of state, for example
Py = Py (PgrTora--) (17)
the caloric equation of state, for example

€ = g (PgsTyr--s) 5 (18)

the energy (o = 0) and momentum (0. = i) equations of the radiating fluid

L S

6 AT R el (19)
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the energy (0 = 0)and momentum (0 = i) equations of the radiation field

R?‘g = ¢ (20)

and the closure relations

ptd

et , (21)
where £ is the Eddington tensor.
a) Inertial Frame RHE.

In inertial frames the calculation of the covariant derivatives in equations (16),

(19) and (20) in any geometry is direct. For example, in Cartesian coordinates the above equa-
tions become

i
(w(p(,)’t + (Ypyv )'i =0 , (22)
De, D (1 A0 i
-9 =] = G - 3
Polge” * 2o pelpg) | = veres -viet (23
i L e i . s oyl
2 hoyy ov™ _ (i i) v I Ay ai v o
Y p°(l+c2) oE £7-8 P z (P,t+vjf +ENHGT— G, (24)
E_ + Fi = - G° (25)
R T
et 4Pt = -6t (26)
't ]

where x = 9Y/9ox.

For spherical geometry gee MM. These authors also give the transformation equations,
for the components of the tensor R* and the four-vector Ga, between the proper frame and any
other inertial frame. For example, in the case of one-dimensional motion they are given by:

-y E + Y vy
E=v [Eo-o-c2 Fo-b(c) Po]' (27
2
P oy (14 %) By vEg + By, o
c
P = Z[P +2VF + (V)z E] (29)
=y ot T Fy r 0ol
0 _ 0,Y !
G’ = Y(Go-fc Gp) (30)
1 1,V 0
G = Y(GO +E GO) ' (31)
where ®
Gy = % I dvo[cxo(vo)go(vo)'4“no(vo)]’ 32)
o
11 (%
6 = 2 [ avy Xy 997y (9. (33)
o

The respective relations for the non-relativistic limit, are obtained taking y -+ 1
Y
and v2/c? + 0 in the above equations.

From equations (27)-(31l) it is seen that formulations of RHE neglecting terms of
0(v/c) (Pomraning 1973) do not distinguish between Eulerian and Lagrangian frames and therefore
they are not correct; for further discussion on this point see MM.
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It can be easily shown that the order of magnitude of the radiating flux F; and the
absorption-emission term cG, become

,

cEg in FSR ,

Fg " 3 Ap (34)
L(T) (CEg) in DR.

(cEg

in FSR
X in ,
p
cA .
o Z'ZE E, in SDR,
Gy v 4 (35)
v

7 Eo  in DDR,

LO in radiative equilibrium.
From relation (34) one concludes that if (A_/£) > 1, the flux Fo becomes larger than the maximum
radiating energy flux cE,, error which one arrives at when diffusion approximations are applied

to the FSR. The above error jgpartially avoided by introducing flux limiters, as will be dis-
cussed later.

On the other hand, due to the fact that the radiative force

X(VE(V) in FSR ,
£ n XOVEOV)
R © E(V) in DR
T '
f, does depend on X (V) in FSR but it becomes independet on X (V) in DR; result of great importance
in the study of radiation driven winds (Castor et al. 1975; Owocki and Rybicki 1984,1986).

b) Comoving Frame RHE.

There are several conceptual and practical reasons for handling radiating flows in
comoving (lagrangian) frames (Mihalas et al. 1975, 1976; MM), although the radiative transfer
equation becomes much more cumbersome in such frames. For example, in Cartesian coordinates
equations (16), (19) and (20) can be written as

DPg

Dt + P v, =0 ; (36)

'l

o [Dﬂ +p= (%)] = €0+ G}, or

0lpt oDt (37)
(eo )+ (g Po)—— (——] = po —5; Fo,i ;
p0(1+%}] g{—i= fi‘ - Gijpmj+G§ , or
Py I?I (%“:-)+1=‘::I:.L+P°ijvi,j+ci2 aiFj+cGz =0 ; (39)
g-g— -g? (%%) +P:’?j + ;lz— 1=‘jvfj +:12_ (ani+ajpi'j)+G% = 0, (40)
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aj being the accelaration Dvl/Dt. The RHE in comoving frames and different geometries have been
analyzed by Lundguist (1966), Castor (1972), Pomraning (1974), Buchler (1979, 1983), Mihalas
(1980, 1981, MM), Munier and Weaver (1984), and Munier (1985).

For the one dimensional and non-relativistic case, the RHE (36)-(40) become

g—i&*po g—\z’=° (at)

po[ggﬁ +p gg-éaa] = €°+ ch, or (42a)
= (e0+§-‘;—] + (p+P0)BQt- (‘pl—o) = %‘:'51;?;’ (42p)
R T (43a)
PoBe (e 28] = £ - ey -2 5 ta3p)
g—f::—9-+%—+(Eo+Po)-g—‘z’+ch=0; (44)
21;—31;—0+%§l+”732—‘z’+c},=o. (45)

The corresponding equations to (42b) and (43b) including dissipative affects in the DR were ob-
tained by Weinberg (1971); see also (MM).

Equations(42) and (43) give the energetical and dynamical coupling between matter
and radiation field, respectively. Equations (42a) and (43a) are more appropriate for use in
FSR, and equations (42b) and_(43b) in DR, respectively. In the extreme case of no matter-radi-
ation coupling, Gg -+ 0 and Gé + 0. Hence, equations (42a) and (43a) reduce to the material energy
equation with local heat input (or output), and the Euler equation, respectively.

From equation (42a) one obtains:

' (AE)R in FSR and t_,

(0, _D.g_%) =(cc;3) ~ (%) (%]R in FSR and t, (46)

R in DR.

From the above relations, it is obvious that on the time scale tg equation (42a) in FSR reduces
to the quasi-static case, due to the fact that t_ << tg or v/c << 1. In DR the strongest ener-
getic coupling between matter and radiation occurS for R v 1, but in FSR, R might reach small
values, R < 1 if AE/Z.> 1 so that (p, Deo/Dt):(ch) Nl

1
From equation (43a), the ratio of the gas pressure force to the radiation force G,

is
5 (%E R in FSR
(§§)=(G3) v (47)
R in DR.

Therefore, in DR strong dynamical coupling occurs if R v 1 but in FSR, R could be < 1 (if
AP/K > 1) so that radiation force can be comparable to the gas pressure.

The four terms of equation (44) scale as
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1:1: v : JL in FSR and t_ ,
c kp s
T:1:%; £ in FSR and t_ ,
c c AP f
) 2 (48)
z-x—:lzy-—)\——:l in SSR ,
c Ap cAp
c A .
1.;—5.1.1 in DDR,
and those of equation (45) scale as
l:l:y—:i in FSR and t _,
c Ap s
YVo1:%Y. 2 i rer ang, (49)
c c Xp
\4 éB v A .
- : 1 = : 1 in SDR and DDR.
c £ c

Therefore, terms of 0(v/c) in equations (44) and (45) can be dropped (quasi-static 1limit) in FSR.
If so, only first, second and fourth terms remain on a time scale tg, and second and fourth on

a time scale tg. In DR the dominating terms are the second and fourth, but in DDR, first,third
and fourth terms dominate in equation (44). However, in radiative equilibrium, ccg ~ 0, and all
terms have to be retained in equation (44). The discussion for the corresponding equations in
spherical geometry has been carried out by Mihalas and Mihalas (MM) and as emphasized by these
authors, the inclusion of terms up to O0(v/c) in equation (44) ensures a correct transition be-
tween the two regimes (FSR and DR). Furthermore, the consistency between inertial and comoving

descriptions is only guaranteéd if terms up to O(v/c) are retained in both descriptions of
equation (44).

IV. LINEAR SOLUTIONS OF THE RHE.

There are efficent numerical techniques (Winkler 1984) which allow to solve the RHE
under very different physical conditions. However, the classical problem of determining solutions
to the RHE near to equilibrium states (linear solutions) continues to be a main problem to be
treated, mainly for two reasons: (i) the above solutions are solutions in first approximation
to the RHE; (ii) they describe the evolution and propagation of small disturbances.

The linear analysis proceeds as follows: One assumes that the solutions to RHE have
the form

‘Pj (rl t) = lpj (x) + ‘llj (rlt) ’ (50)
and _ )
I\Pj(r,t)l << ij @], (51)

where $j(r) are known stationary solutions and $j(r,t) are functions to be determined.

With condition (51), the system of RHE can be linearized and written in the form of
an eigenvalue problem whose compatibility condition leaves a secular equation. For example, if

tTJj (r,t) v expt + iker), (52)

n and k being the damping (or growth) rate and the wave number of the disturbance, respectively,
the secular equation becomes a polynomial relation between n and k,

n = n(k), (53)
(i) If one assumes n = 6 + iw (0 and w being real quantities) and k a real vector, one is dealing
with the classical problem of stability (Chandrasekhar 1961). Therefore, the equilibrium is uns-

table if 6 > 0, stable if 6 < 0 and marginally stable if 6 = 0. The marginal state defines the
critical wave number k. which determines the scale length of structures that can be formed.
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(ii) If one assumes n = iw (6 = 0) and k = k; + ik, (k, and k, being real vectors), one is deal
ing with the propagation problem. The wave modes for which kg > 0 are damped, and those with

kg < 0 are amplified; hence, they can originate nonlinear phenomena such as discontinuities
(for example, shock waves).

a) Linear Solutions with Local Heat-Loss Function.

i) Local stability.

In Astrophysics there are many specific situations in which the radiative transport
becomes irrelevant and the heat gain-losses can be represented by a function L(p,T,...) depend-
ing only on local properties of matter. In this line of thought the local stability problem has
been analyzed by Parker (1953), Zanstra (1955a, 1955b), Weymann (1960), Field (1965), Hunter
(1966, 1969, 1970), Goldsmith et al. (1969), Field et al. (1969), de Jona (1977), Goldsmith
(1970), Dofouw (1970), Schwartz et al. (1972), Yoneyama (1973), Glassgold and Langer (1976),
Oppenheimer (1977), Sabano and Kannari (1978), Flannery and Press (1979), Lepp et al. (1985),
and Gilden (1985).

Most of the cited work was mainly addressed to the problem of explaining the actual
structure of the interstellar medium.

The role played by thermal imstabilities as generators of primordial structures (ga-
laxies, globular clusters and first generation stars) has been studied by Kondo (1970), Kondo
et al. (1971), Gurevich and Chernin (1975), Zentsova and Chernin (1979), Shchekinov (1979),
Zentsova and Urpin (1980), Shchekinov and Edel'man (1980), Suchkov et al. (1981), Silk (1982,
1983), Shchekinov and Entél (1983), Zel'dovich and Novikov (1983), Ibdnez and Parravano (1983),
and Fall and Rees (1985).

The origin of structures in different parts of the solar atmosphere has also been
explained by thermal instabilities; see for example, Athay (1976), Antiochos (1979), Hood and
Priest (1980), Priest (1981), Craig and McClymont (1981), and Cheng et al. (1983).

Thermal instabilities also seem to be the origin of clumps in cosmic jets (Konigl
1984; Ferrari et al. 1985: Bodo 1985), and in active galactic nuclei ( McCray 1979; Krolig et
al. 1981; Shlosman et al. 1985; Mathews 1986;...) and of filaments in cooling flows in clusters
of galaxies (Fabian and Nulsen 1977; Mathews and Bregman 1978; Cowie et al. 1980; Fabian et al.
1984).

ii) Wave Propagation.

The propagation of small disturbances in plasmas with local heat gain-loss function
has been studied by Souffrin (1966), Flannery and Press (1979), Ibaniez (1985), Ibaniez and Men-
doza (1986) and Ibafez (1986a).

Attempts to extend the linear analysis to the non-linear regime have been carried
out by McMillan et al. (1980), and Kritsuk (1985).

b) Linear Solutions to the RHE with Radiation Transfer.

In Astrophysics one also encounters situations in which the energy flux throughout
the matter strongly depends on the bulk conditions of the region under consideration. There-
fore, the radiative transfer effects become important, demanding radiation transfer calcula-
tions.

i) Stability.

The temporal behavior of linear disturbances, considering radiation transport, has
been studied by Spiegel (1957a, 1957b, 1960, 1964), Schatzman (1958), Bohm (1963), Osaki (1966),
Unno and Spiegel (1966), Field (1971), Delache and Froeschlé (1972), Le Guet (1972), Anderson
(1973), Froeschlé (1973, 1977), Giaretta (1977), MM, and Ibanez and Plachco (1986a).

Applications to the solar plasma have been carried out by Frisch (1970), McClymont
and Canfield (1983a, 1983b), Canfield et al. (1983), An et al. (1983), and Fisher et al. (1985a,
1985b, 1985c); to the quasar gas by Mestel et al. (1976), Mathews (1976, 1986), Kippenhahn
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(1977), and Beltrametti (1981); and to the gas sourrounding collapsed objects by Linger et al.
(1981), Egorenkov et al. (1983)...

During the last years renewed interest for the study of the temporal behaviour of
small disturbances in radiating flows has arised because its connection to the problem of the
origin and structure of the radiation driven winds (see for instance, Nelson and Hearn 1978;
Martens 1979; MacGregor et al. 1979; Abbot 1980; Kahn 1981; Owocki and Rybicki 1984, 1986; MM).

ii) Propagation.

The propagation of the wave modes resulting from the roots of the equation k = k(n)
with 6 = 0, has been studied by Pai (1966), Stein and Spiegel (1967), Hearn (1972, 1973), Kane-
ko et al. (1975), Bisnovatyi-Kogan and Blinnikov (1979), Mihalas and Mihalas (1983, MM), Lucy
(1984), Gough (1984), Ibafiez and Plachco (1986b), Ibafiez (1986b), and Mihalas (1986). Here we
will not consider the problem of stellar acoustics about which a vast number of work exists
(see for instance Cox 1980; Mihalas 1984; Davis 1985;...).

c) Several Open Questions.

1. Which are the criteria for stability (instability) and damping (amplification) in the pres-
ence of gradients and under non stationary conditions?

2. The study of stability and wave propagation in confined radiating fluids with boundary condi
tions remains to be done.

3. More studies about disturbances with spherical and cylindrical symmetry are required.

4. Which are the general criteria determining time scales and scale lengths for amplification
when unstable fluctuations or amplifying disturbances reach the non linear regime, i.e.,

1951/ 19,1 2 12

5. Which are the criteria for stability (instability) and damping (amplification) in the turbu-
lent regime?

6. What about the stability of relativistic flows? The need of an answer to this question arises
from the fact that several relativistic fluids (for example, jets) seem to have clurpy struc-
ture. In models for those fluids, Field (1965) criteria for thermal instability have been applied
(Bodo 1985).

V. NON-LINEAR SOLUTIONS TO THE RHE.

8 When A /£ << 1 it is possible to find explicit forms for the radiation energy-stress
tensor R in terms of series expansions of Ap/ﬂ and v/c which are assumed to be small.

In the equilibrium radiation diffusion approximation, the radiation field is assumed
to be thermalized, J = B,. The zero order approximation becomes independient on either A /£ or v/c.
Here, Eg = aRT“, P}j=E°5 1/3and F% = 0. The first order approximation contains terms depending
on A/ but not on v/c and the radiation flux obeys a diffusion relation Fi ~ 813 (E,) j/Xg- This
approximation does not contain dissipative terms which are of O(vz/cz) and O(A v/lc): but they
do appear in the approximation of order two (Thomas, 1930; Hazelhurst and Sargent 1959; Simon
1963; Hsieh and Spiegel 1976; Masaki 1981; Mihalas 1983). In the second order radiation diffu-
siog approximation it is a assumed that therms of O(Apv/lc) are more important than terms of
0(Ap/£%), but this assumption has not been justified. Approximations including terms of
0(fp/£ ) have not jet been carried out. A deep critical study of the diffusion approximations
can be found in Mihalas and Mihalas (MM).

It is clear that the condition A_/£ << 1 does not imply that J, (V) = Bg (V) . There-
fore, non-equilibrium diffusion approximations have been developed in which Jg (V) # Bg (V). The
above approximations are essentially first or second order diffusion approximations, Fy v VEg,
(Zel'dovich and Raizer 1966; Castor 1972; Hsieh and Spiegel 1976) in which the energy equation
is solved by assuming that the thermal behavior of matter and radiation field are determined by
two-parametrical functions B(T) and B(T,) respectively (Freeman 1965); or treating Eg(vg) with
multigroup techniques (MM and references therein).

Due to the relative simplicity of the diffusion approximations, attempts have been
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made to extend them to the FSR; but there |F| > cE! and in addition, the speed of the diffusion
of radiation becomes larger than the speed of light, To avoid these absurd results some authors
have (ad hoc) introduced flux limiters (Winslow 1968; Alme and Wilson 1974; Levermore and Pom-

raning 1981). The reason why the diffusion approximations fail when A, /£ X 1, is the neglection
of the term DF/Dt in the radiation momentum equation. Severe criticisms to the above types of

approximations have been expressed by Mihalas and Mihalas (MM).

As a conclusion of this section one may say that in spite of the relative simplici-
ty of the radiative diffusion approximations extreme precautions have to be taken if one wants
to apply them in ranges other than Xp/K<< 1, or if radiative viscosity is considered.

VI. CONCLUSION.

In summary, one may conclude that a self-consistent and covariant formulation of
the RHE has been completed. On thisbasis many astrophysical problems treated with the help of
intuitive formulations wait for an appropriate restatement and solution, and several open ques-

tion concerning the origin and structure of many cosmic objects will find the correct answers
by its use.
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DISCUSSION

CARDONA: ;D6nde se encontraria esta formulacidn respecto a los regimenes de la aproximacidn
de Sobolev para vientos estelares y cudl es su validez?

IBANEZ: La aprorimacidn de Sobolev permite calcular el espesor Optico efectivo de medios en
expansidn, el cual viene a ser proporcional a la razén entre la velocidad térmica y el gradiente
de velocidad, lo cual a su vez, permite calcular la fuerza radiativa de lineas en vientos este-
lares. La anterior aproximacidn ha sido la base para el desarrollo de la teoria de vientos es-
telares originados por radiacifn, en particular, la teoria CAK y subsecuentes desarrollos.

Miguel H. Ibafiez S.: Universidad de los Andes, Apartado de Correos 264, Mérida, 5101,Venezuela.

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



