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RESUMEN

Hemos construido un modelo para Cygnus X-1 el cual consiste de un disco exterior dpticamen-
te grueso y geométricamente delgado, asi como un disco interior dpticamente delgado y geométrica-
mente grueso, y sobre éste una region coronal que dispersa fotones del disco exterior hacia el disco
interior en donde sufren de efectos compton inverso. Este modelo reproduce el espectro observado
de Cygnus X-1 bastante bien. Usando un criterio de estabilidad local y tomando en consideracién
la contribucién de las pulsaciones de la presion turbulenta en equilibrio hidrostdtico, se muestra que
la region interior es térmicamente inestable contra pequefias perturbaciones en la direccion radial.
Para el disco exterior se ha visto que la inestabilidad en el mismo ocurre mientras la presién de
ﬁdie;\cién excede un valor critico. Este valor, sin embargo, depende del nimero de turbulencia de

ach.,

ABSTRACT

We have constructed a model for Cygnus X-1 consisting of an outer optically thick and geo-
metrically thin disc, an inner optically thin and geometrically thick disc and above it, a coronal re-
gion that scatters photons from the outer disc to the inner disc, where they are inverse comptonized.
This model reproduces the observed spectrum of Cygnus X-1 quite well. Using a local stability cri-
terion, and taking into account the contribution of the turbulent pressure pulsations in hydrostatic
equilibrium, it is shown that the inner region is thermally unstable against small perturbations in
the radial direction. For the outer disc it is seen that instability sets in the disc as long as the ra-
diation pressure exceeds a critical value. This value, however, depends on the turbulent Mach num-

ber.
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1. INTRODUCTION

More than 15 years after its first identification with
the massive single line spectroscopic binary HDE 226868,
Cygnus X-1 keeps both its candidacy as a black hole, as
well as the belief that the primary energy source for the
X-rays is the accretion of gas from the supergiant prima-
ry companion. However, how the infall proceeds and
how the gravitational energy gets converted into X-rays
are still unsettled questions (Liang and and Nolan 1984).

At present, the inverse comptonization by hot ther-
mal electrons (T, ~ 10%), in a region optically thin
for true absorption, but with electron scattering depth
Tes v 1—5, appears to be the most natural explanation
for the observed spectrum (Shapiro, Lightman, and
Eardley 1976; Liang and Nolan 1984). A persistent
requirement of this idea would be the copious produc-
tion of soft X-rays photons.

Thorne and Price (1975) set forward the idea that
the inner disc around Cygnus X-1 could be interpreted
as the result of an instability in the outer optically
thick disc. According to that idea a secular instability
present in the cool disc would drive the inner region to
a hot, optically thin and geometrically thick disc, which
should explain the observed spectrum near 100 keV.
Shapiro et al. (1976) using this idea constructed a model

for Cygnus X-1 assuming unsaturated comptonization
of an external soft photon source, so that Y = 1 always,
together with the assumption of non thermal equilib-
rium between electrons and protons. Instabilities that
could provide further coupling are absent. The ionic
temperature T;, much greater than T,, besides permit-
ting the ionic pressure to dominate over the radiation
pressure, makes the disc structure in the inner region
highly dependent on T;. This condition T; >> T, is
simply assumed for a given range of the parameters
(M, M,@) suited for Cygnus X-1.

However, it has been shown by Meirelles (1986)
that the thin disc approximation is incompatible with
the assumption of gas pressure dominated disc and
T; >> T,. A two temperature solution does exist for
(M,M,a) quite different from the assumed parameters
of Cygnus X-1. There is also a supersonic solution in
the case of radiation pressure dominated disc. This so-
lution, however, besides blowing the disc up is meaning-
less in the sense that viscous dissipation puts most of
the energy into the ions only in the case of sub-sonic
turbulence.

Another model compatible with observational data
is the model of a hot corona (T, ~ 10° — 10" ®), heated
by non thermal processes, surrounding a cooler standard
accretion disc (Icke 1976; Liang and Price 1977; Bisno-
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vatyi-Kogan and Blinnikov 1977). This corona would
inverse comptonize the soft photons from the disc. A
very serious drawback to this model consists on how to
obtain a disc with an energy output smaller than the
corona, a necessary requisite for invoking the existence
of the latter (Lyubarskii 1984). However, there is not,
to the moment, a detailed self consistent non thermal
model solution for Cygnus X-1. These facts provide
strong motivation for the model we propose.

In this paper we try to incorporate to the inverse
compton model, in which some observational features
are already taken into account, a self consistent dyna-
mics, For that, we propose a model which is a blend of
the thin disc and of the coronal thick disc.

The outline of this paper is as follows. In § II the
model is presented, in § HI the dynamics of the accretion
disc is considered and, in §IV some comments about the
turbulence in the disc are made. In §V we restrict the
equations to the steady state, which solutions are given
in full detail. In §VI the emission spectrum is discussed
in terms of the inverse comptonization. In §VII, given
some boundary conditions, all the parameters are ex-
pressed as a function of the disc luminosity. IngVIIl the
conditions for stability are analyzed in linear approxi-
mation. In § X conclusions are drawn.

II. THE MODEL

This model Cygnus-1 considers an accretion disc sur-
rounding a very compact object, the accreted matter be-
ing supplied by a massive primary companion. This ac-
cretion disc is quite different from the usual ones,
since it may be thought as a composite of a hot inner
region, hereafter denoted by 1, optically thin and geo-
metrically thick; a cooler peripheral region, hereafter
denoted by 2, optically thick and geometrically thin,
both surrounding the region 3, hotter than region 2,
optically thin and geometrically thick. The region 3
may also be thought of as a corona or a very dynam-
ical disc. We are, obviously, assuming that part of the
energy generated in rtegion 2 is not thermalized there
and may result in non thermal modes of energy trans-
port that are pumped to and dumped in region 3.

Unfortunately, owing to existing difficulties as-
sociated with the formulation of a model, ie., lack
of adequate energy generation theory for the disc as
well as the knowledge of the role of magnetic fields
in the propagation of energy and the energy pumping
from region 2, make the physical description of re-
gion 3 quite problematic. For the moment, we shall
admit the existence of the region 3, with the role of
emitting its own soft photons and reflecting the soft
photons produced in region 2 to region 1, where they
will be inverse comptonized. Though in a very quali-
tative way, a description and the equations governing
the corona may be found in the paper of Liang and
Price (1977). Figure 1 is a schematic representation
of the model for Cygnus X-1.
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Fig. 1. Schematic representation of the model for Cygnus X-1.

Region 1 may be the result from a thermal insta-
bility that develops in region 2, at Ry, the transition
point between regions 1 and 2, making the disc geo-
metrically thick and optically thin (Thorne and
Price 1975). :

III. DYNAMICS OF THE ACCRETION DISC

In this section we shall present a description of the
disc which differs from others which have been presented
up to now in the literature. Examples of alternative des-
criptions can be found in the works of Pringle and Rees
(1972), Shakura and Sunyaev (1973, 1976), Lynden-
Bell and Pringle (1974), Stewart (1975), Shapiro et al.
(1976) and Pringle (1981).

As usual, we describe the disc by using cylindrical
polar coordinates (R, ¢, z). z=0 is taken as the sym-
metry plane of the disc.”The assumption of Keplerian
velocity, thin disc, radiative energy transport only in z
direction are also made. Hydrostatic equilibrium holds
in regions 1 and 2 till terms of order 22 (& is the semi-
scale height of the disc), so V, =0 to the same order.

One of the differences of our work with regard to
previous treatments is that we consider a dependence
of V; and p (and other variables) with z. This depen-
dence we take, however, as a very inild one. More
specifically, we assume that in a power expansion
about z = 0, the dependence is such that one can
keep only terms of second order in z. That is, for
example:

22 | d%
Z)=p, + —| — 1)
e 2 20]
0o »
o]
V,tz)=V,,+— | —V )
r o7, ozt o,
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where o stands for variables calculated at z = 0. To
expand the above variables we have used a symmetry
condition. We now write the equation of continuity
as (Landau and Lifshitz 1971)

3
-a-;f,, pdV+ f div (o¥)dV =0, (3)

[}
defining U=2 [ pdz, (3) becomes
[}

iU+2f’Za(Vd-o 4
ot r o Or rpVy) dz ) )

Equation (4) may be cast in a much more useful
form in terms of the radial flux of matter at R, in-
side regions 1 and 2, i.e.,

aU ! 2aM+2(oV) ﬁ—0' ®)
ot 2ar or vVz=2 o ’

the absence of the last term of equation (5) in the
analysis of Shakura and Sunyaev (1976) is due to
their boundary condition p=0atz=2.

For 0 < z < £, the assumption is made that the
decrease in density is compensated by an increase
in radial velocity, in such a way as to keep pV;
constant. This is equivalent to the boundary con-
diton

aZ az
V[r*’]” % o ©

which implies
M(r) = — 4 mpoV,, 12+ O(2°) , Q)
and
(pvf)z =Q = pOV!0+ O(Q4 ) ’ (8)

using (7) and (8) we write the continuity equation as

oU ¢ M
—_——==0 . ©
ot 2mr 3r %

We now define wyg, the viscous stress tensor, in such a
way that 2mw;4r? is the torque due to viscous forces ac-

ting between one layer of matter and another. The time
dependence of the ¢ velocity component can be justifi-
ably neglected, so that the equation for momentum
transfer can be written

-1 3w, (o)

where V) is the Keplerian velocity. Integrating (10) over
z it becomes

. 4m d Wiy T

Qr or L

, (1)

where Wy, = 2fw4dz and Q is the Keplerian angular ve-
locity. From the hydrostatic equilibrium equation

—P=—p—1z> (12)

setting P(z = 2) = 0 we have, keeping terms till second
order in z,

p, GM

P=
2r3

@ — 2?) - (13)

Taking the average and setting <P> =P, yields to second
order, :

_uQx
6

P

(14)

as equation of state one usually has for the pressure the
contribution from the gas, the radiation and the turbu-
lence. If we define B as the relative radiation pressure
and « 1/2 as the turbulent Mach number, we have

Uk T
P=—— + P+ oP (15)

T is the temperature, k is the Boltzmann constant and
my is the hydrogen mass. We have assumed a completely
ionized gas.

Finally we may write the energy equation as follows:

d P d
— E = —— — 4+ qt—q” , (16)
a s pra MY

in which E is the internal energy per unit mass, q+ and
q- are respectively the amount of heating and radiative
cooling. E should include contributions from the gas as
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well as from radiation. Clearly, E = €/p, where € is the
total internal energy density. From (15) we have

e=§ P(1+ - a) 17)

integrating (16) over z and using the equation of conti-
nuity, we have up to second order terms in £,

02 0 1 0
P—+ 28— e=—-— X
ot at I or
X {rV.(p+ e} +Q"-Q", (18)

where Q+, Q- are the intégrals over z of q* andq~.In-
serting (11), (13) and (17) into (18), yields

uQe of U Q%

)
6 or ot 4

2 Q d Wry r*
x[i 5+ 36— 3a) — — ]+

[1+ ﬂ—az]=rl X

or 12 or %

+Q*-Q". (19

IV. ON THE DISC TURBULENCE

It is generally assumed that turbulence in the disc
may be due to convection and to large shear stresses
caused by differential rotation.

Despite these two quite distinct processes, the main
results we obtain are not dependent upon the way tur-
bulence is generated in the disc. So, up to second order
in £, the energy dissipation between two adjacent layers
in the disc, assumed to rotate with Keplerian velocity, is

Wy =302Q , (20)

where 7 is the average turbulent dynamical viscosity. Ne-
glecting magnetic fields and assuming isotropic and ho-
mogeneous turbulence

—-_ 1/2
n=3V3c = p2Q, Q1)

to obtain this expression, we have used for the sound ve-
locity

v=08/\3 ; (22)

substituting this in the former expression, and using the
hydrostatic equilibrium equation, we obtain the well
known result of Shakura and Sunyaev (1976)

L =3 a!’? R, (23)

to allow a comparison of our results with those obtained
by Shakura and Sunyaev (1973), we make
W, =2a'%pe

r

V. THE STATIONARY DISC

To solve the equations for the stationary accretion
disc we shall assume that region 2 is gas pressure domi-
nated and region 1 is radiative pressure dominated. Be-
sides this, we shall assume black body emission for re-
gion 2 and optically thin emission for the inner region.

The separation point for these regions is located at r,,
in units of inner radius. In both regions we have as solu-
tion for the continuity equation

M@)=C® , (29)
with the constant to be determined from given bound-

ary conditions.

a) The QOuter Region 2

From the hydrostatic equilibrium equation, neglect-
ing all the contributions for the pressure, that of the gas,

6k 1/2 1/2

my Q

the energy equation in the stationary regime is written
(Lynden-Bell and Pringle 1974)

] . . 8t 9 r’D
—2QM=-QMr+ — —
or 3 o0 Q

* (26)

H~lH

in obtaining (26) allowance for the variation of M with r
was made. D is the dissipation rate, which in the station-
ary regime equals the radiative cooling rate, thus

D=og T* | 27

where og is the Stefan-Boltzmann constant. The energy
equation may be rewritten as
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_ 1'3/3 i [r13/16 y:] =V"a_'y8 , (28)

with r in units of the inner radius and

M,
8
o

v=232X107%?

’

and
Y=Q,1/16 M. (29)
Usually 8vy? >> r25/16_ so the approximate solution

to equation (28) is

25/16

-+ Gy, (30)

Y7 >

2v

C,,is another constaat to be determined from the bpund-
ary condition. The solution for the flux of matter M is

. l C 177
M=3.65X10"* Mu[—? + -—i—] 7, @3l)
14

r25/16

if Myoand Mt are respectively the flux of matter at the
outer radius and at the transition point, we shall have

K]

8.62X 10725 M4 rp’"®
v= R (32)
0 00
rt119/112_ rpl19/112

S
C, =116 X 10%* M;z[ M ] . 2318 (33)

t
9/1
Ty

From the definition of », equation (32) becomes

- M7
2.69 X 10718 2% M, [ ——17/112]
M 1 .
D

I is the disc length in units of the inner radius. Finally
we may write the remaining physical variables for the
(outer) region 2,
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2=574X 1072 M3} X

M. 17 M 7]-1/8
: _ o 25/128 .9/7
X 17/112 17/112 3)) 't X
Ty p
1 Cl 1717
X [—; +r——25/16] ; 35)
-5 M -1/2 Mt !
T+5.06 X107 M3, ;t'm -

Y 7 ) -1/4
_ _ME_ n25/6% %
17112 D
D

2/7
N s
X r ’21, r25/16 ' (36)

If the ratio of the angular momentum of the flow to the
Kleperian angular momentum isé atr=1,

p=28X10"5M;;"* a2 X

Mt ! Meo L Ip -75/128 «
X r117/112 - an/uz
1 Cl -2/1
-15/14 -1/2 - s
Xr [1 —8r ][— >t r“/“] €1
V,=—4X 10-6 Ms-:/z rDzs/em a’? X
M 9 Mm 7)-1/4 x
X {[—;.,/—lt;;] - I:r 17/112]
Iy D

2/17
xrllla[_i+ G ] ED)

2v l,25/16

It is worth to remark that the dissipation rate in this re-
gion is

D=3.74X 10722 M;2 rp"*® X

M, 77 My 17) -t
X [rn/nz] —[ 11/112] X
t p

1 C 8/7
X [_ +_‘] po12/7 (39)

3; [
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b) Region 1

We shall write the solution for the continuity equa-
tion in a slightly modified wayi, i.e.,

o

M
M=T°- g (40)

o

where the subscript 0 means values evaluated at r = 1.
Assuming that the main contribution to. opacity comes
from electron scattering (and that heat production
equals radiative cooling), from the hydrostatic equilib-
rium equation we have

Cm

D=——Hq2¢ (1)

37 op
C is the velocity of light, o the Thomson scattering
cross section. If we make the substitution :

2 9

M=— —Y , (42)
Qr or

(Y now differs from the one previously defined by equa-
tion (29) for region 2) the energy equation reads

F) 3
QQ+2mA)—Y=—1Y , (43)
or 2r

where

Solving equation (43) we obtain

1 -2mA
M=M0 r4(1 +mA) (44)

’

1—-2mA
Q=0 r4(1+1rA) 45)

(o] ’
-5 2+ 5mA
_BTXI0T My Sy

p 172 ° F 34
o

a

X (1-8:72),  (46)

- 4 + TnA
_2X10 4 ql/? , 204 +1;,A)
ST & X
M3,
X (1 _ar-l/Z)‘-l . (47)

We now assume that region 3 supplies a copious amount
of soft photons to region 1, so that unsaturated compto-
nization of these photons is the main cooling mechanism
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in 1egion 1. Setting the comptonization parameter y,
given by

4kT  opPk
m,c?  my

y =
equal to 1, we obtain for the temperature

T = 446 X 10'3 X

al’? %2 _5t8mA
X ———— (1 =812y 1y 4+4rA (48)
M, M3,

in this expression we shall assume that T is constant and
that the dependence with r is accounted by a. The ex-
pression for the dissipation rate in this region is, from
(24) and (19),

11 + 147 A

D =625 X 10" M3 &1 ~ Trana  (49)

V1. THE EMISSION SPECTRUM

The X-ray spectrum for constant temperature regions,
in which inverse comptonization cooling dominates, has
been treated in many papers (Illarionov and Sunyaev
1972; Felten and Rees 1972; Zel’dovich and Shakura
1969; Shapiro et al. 1976; Shakura and Titarchuk 1980).
The generic case when T is not constant is quite complex,
and to the present, has not been treated in full detail
(Guilbert, Fabian, and Ross 1980). As we assumed
constant temperature in the comptonizing region, we
shall write the Kompaneets equation as given by Sunyaev
and Titarchuk (1980), ‘

19 4[aN
—_— — X
x?  ax ax

+N]+

f (%)

x3

+ N — v =05 (50

y=n? mec?/3(r+ 2/3)? kT,

x=hv/kT ,

T = optical depth for electron scattering,

F(x) = Radiation spectrum of the soft photon source,
N =Photon occupation number.

The Green function for equation (50) is Sunyaev and Ti-
tarchuk (1980).

a(a+3)

CCX) = Tomt d

x¢ x3 (exp — x)

fﬁ° 1+ t;)"*’ (exp —t)dt. (51)

o
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(In this section « is an index and not the turbulent pa-
rameter), and the radiative flux will be

f(xg)
F = fx— G(x,xy)dx | (52)

o
I' = gamma function

9 1/2
a=|-+ ] -3/2
3+

fora=1,y =1, the enhancement factor will be

rE G X (53)

fw x3 (exp — x) dx f:(l + ;{-)4 (exp — t) dt

X XQ

11 (o) dx,

It is worth to remark that the dependence of F on r is
due to o and to f(x). As we have taken both « and f(x)
constant, F is constant, which would imply some mecha-
nism for redistribution the energy generated at r assuring
constant temperature,

Another point deserving a comment is that the emis-
sion spectrum is independent of M and M, depending
only on T. So, if we take the same temperature at the
inner radius taken by Shapiro et al. (1976), we shall ob-
tain the same spectrum, which is normalized to have the
observed luminosity above 10 KeV, L, . (See Fig. 2).

otk

log E (kev)

Fig. 2. Solid line gives the predicted spectrum of Cygnus X-1.
Points in the graph are observational data, taken from Shapiro et
al. (1976).

VII. BOUNDARY CONDITIONS

We now express all the integration constants of sec-
tion 5 in terms of the luminosity of Cygnus X-1, which
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we shall assume to come mainly from region 1 and es-
sentially in the X-ray portion of the electromagnetic
spectrum. With these assumptions we obtain

4+ 4nA
L, = 1.57 X 10 [——"——] g, X
’ 3+ 67A

_3+6mA
X 11— I, 4+ 47 A R (54)

according to Shapiro et al. (1976), r, = 15/4. Using the
definition

J_31\'40+3.14>< 10M R, .

RS (55)
4M, +2.1X 10" ¢
We have
3—-4]
° °l 217 - 1.14 (56)
in terms of J equation (54) reads
L, 1 3—-4
17w 10208 11 511 212 57
1.57 X 10*° M, J | 21)-3.14)
Clearly
075<J<15 | (58)

equation (57) may be cast in a much more suitable form,
ie.,

21a)? -J(3.14a-4)-3=0 (59)

with
a=L,/1.57 x 10® M,

To solve (59) we look for an a which yields J in the
range (58) and holding the thin disc approximation. In

Figure 3 we plot ¢, as a function of a
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en the disc in such a way as to intercept at r = 1y, all
the matter that enters the disc at rp, i.e.,

M; (1) =My -

Combining this with the approximate relation

80 C. MEIRELLES FILHO
T I I
0L -
< L i
c
=
8L -
6 -
1 | ]
-2 -1 0] Ina { 2

Fig. 3. 2, as a function of a. 2g in units of 10°-

We shall take a =0.5. This gives

J=089,
M=1.27x 10 Las gs™*,

25=5.6 x 10® cm,
a=734x 1072

If the temperature at r =1 is Tg and 8 = .9 (Apparao and
Chitre 1974; Pacheco and Steiner 1975) we shall have
for the turbulence parameter o

@=974X 107 L™ M7} Mo To ’ (60)

with Lg the X-ray luminosity in units of 10% ergs™,
Ty, the temperature in units of 10°, Mg in unitsof 10'7.
The luminosity of region 2 is

L, = 1.74 X 10%° i5*/? 1033 M58 M,,  (61)

taking rp ~ 100
L, =15X 102 M5 M, . (62)

Assuming that a fraction of this energy, say g, is reflect-
ed through region 3 to region 1, we obtain

6.67X 1073 M8, L
B= > 38 %% (63)
1

B is the energy enhancement factor for comptonization
of the soft photon source. M, should be expressed in
units of 10! 7. If the instability is strong enough to thick-

119/112
M % (64)
M. Ip

gives
M, =5.41 X 10" Ly, (65)
C, =8.44 X 1013 M;] L, (66)
2, =5.69 X 10* M3,* L1:® (67)

and
Bg=1.23X 1072 M}, ; (68)

a rough estimate gives g ~~ 0.25 and using 6 =0.9 (Pa- -

checo 1975) yields B = 27.

Finally we obtain the condition that must be satisfied
in order to make inverse comptonization the main cool-
ing mechanism in that region. The luminosity coming
from Bremsstrahlung is

_1.37X10% Mo'® M3,

3/4 04
o Qo

Ly (69)

M inunits of 10!7. Equating this to the luminosity yields

_7.85 X 10%° M3 M3,

% 16/3 4 (70)
8" Ly
However, if Tg =1
+22 N2 M4
a=5x 10 Mg M3, . 1)

%

For a > o comptonization dominates Bremsstrahluhg.
Comparing (71) and (67) we see that this will happen as
long as
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1.41 X 10°
g, > 21 (72)
|
or
Lig>172x 102 | (73)

VIIL LINEARIZED EQUATIONS AND STABILITY

In order to see how the perturbations in the disc
evolve with time, we shall linearize the disc equations,
keeping only terms of the first order of the perturbed
variables. We shall adopt the same procedure of Piran
(1978), writing phenomenological expressions for the
kinematic viscosity v and for the energy removal Q™ .
However, our procedure differs from that of Piran be-
cause we take into account the effect of turbulence
pulsations in the equations of state. Specifically, we

write
1/2 2 n m
S A I N (74)
3v3 | U, 2
and
K S
e 2] 2 (75)
Q =g 0 u, |

The coefficients m, n, k, s describe the local behaviour
of Q™ and v around their steady state values. The above
expressions are quite general and applicable for any vis-
cosity law valid for the unperturbed flow. G depends on
what is assumed for the unperturbed flow. The subscript
o stands for the unperturbed flow. From the expression
for the viscosity we obtain

2n
U Q 2(m-2)
a=a, ,:U—-] [?] . (76)
o o

We now define the perturbed variables in terms of the
unperturbed ones

U=U0 (1 +u)

2=2, (1 +h) 7

Using equation (76) and the hydrostatic equilibrium
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equation (14), we obtain from the linearized equation of
state

8T I X

To 1_Bo'—wo

X ’:2h(3 — B, — 0oy —m)— 2nu — BJ (78)

where 8T is the variation of the temperature and B, is
the variation, of the ratio of radiation pressure to total
pressure. From equation (75) we have

Q K uls
P = T g7 | — — (79)
c g, U,

7 is the optical depth.
In the inner region electron scattering dominates free-
free absorption, so we may write

K S
p-T, Ty | L i
oM, 0 | u, | GO

this gives

and
B1 =B, {su+(kk+1)h} . (82)
Using this expression, equation (78) becomes

8T
7= (6 (18, ~ 2,

o

2m}h +

+{SBO—'2H]’U_ (83)

Keeping only terms of 2nd order in £ and assuming A <<
%o, where X is the wavelength of the perturbation, we
obtain
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du 2 o, 0 /
—=Zg V2 ——{(n+1u+(m-1)h} (84
at 3 aO Oar2 )

for the continuity equation, and

RTINS
60t 4 Bo= o at(u )
+ 5o[s— +(k— 1)ah]

0

2zll+2 2ﬁ -
Il Y (.m_‘)at

5438 -3¢
= l:__ 3108 0] a]0/2 92(2) X

X = (n+1)u+(m—1)h +
or?

1/2 Q
+ < (n + 1)u.+ mh — su — kh (85)
Z v » :

for the energy equation. To obtain equation (84) we have
used

Q*= Ve @ - (86)

and the equality of heat production and energy removal
by radiation in the unperturbed flow. For u and h we
look for solutions of the type eW! setting’

y=(n+1ju+(m-1)h. (87)
Equation of continuity (83) becomés

1/2 2

o, Q. 0

= 20—y (88)
w or

2
u= -
3

él'ir_nin;tijrigh‘and u from (84) we finally obtainvfor the
energy equation ’
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{w? [5 —a, (6m—9) + 38, k] + 3a, "2 Qe(k — m) }y—

2

2 agp 0 3
—gao Q!ZO—a—rz—y{w(Sn+2m+3+ B, X

X (k(n+1)—s(m—1)) —

—ag [(n+1)(6m — 9)— 6(m — 1)n) — 3a;/* X

X Q1 -k)(1+n) +s(m—-1]}=0-  (89)

Aswe have assumed that the perturbed variables change
much more rapidly than the non perturbed ones, the ne-
glect of variations on B, and € is Justlfled yielding the
following dispersion relatlon

w? {5 —a, (6m—9)+ 38k} +al? Qw{3(k - m)+
+§(20/>\)2‘ [5n—2m+3 + 38, (k(n + 1) — s(m — 1))+

+al? (9-3n—6m)]} - 2y ® Q,/N? X

[A-kK)YQ +n)+s(m-1)]=0 - (90)
The solution to equation (86) is
R ?)
'w+a° 2 =3k —m)—= (8,/N?*Z;*

: 1/2
+ [ 3(k — m) + g (2,/N*Z,* - 82, (Qo/k)zlz] }(91)

where
Zo=5—0,(6m—9)+38 k ,
Z, =5n+2m+3+3ﬁo(k(1+n)—s(m— 1))+
+ 301(1,/2 B—-—n-2m),

Z,=k-1)A+n)+s(1 —m).
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In the small wavelength limit equation (87) reduces to

w,=-3Z,0¢*Q, (92)

2 z :
©. =3 Q.M al? . (93)
YA

o

Thus the stability conditions will be
k-m>0 (94)

5 —ay (6m—9)+ 3B,k >0 - (95)
Sn+2m+ 38, {k(n+1)—s(m—-1)}+
+ 3a)/*(3—n-2m)>0, (96)

(k=1)(1+n)—s(1-m)>0 . 97)

Now we apply our results to study the stability against
small perturbations in the scale height and column den-
sity for a gas-pressure dominated disc in the outer re-
gion and radiation-dominated disc in the inner region.
We shall assume the standard viscosity law, i.e., m = 2,
n = 0, in the outer region. The (outer) region-2 emits
like a black body; thus,

B 1-8,—a

— = | —— | (7Th-u) (98)
B, 1+38,—a,
and
T . 8-48 —8a 4
W T | 848, 80 o . 99
T, 1+38,— 0oy 1+38, —a, )
For k and s, we obtain
— 48, -8
_8-4B, —8a (100)
1436, —a,
4
s=—€9-—-— (101)
1-38,—a,

Condition (90) is the most severe constraint for stability
and reads
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Fig. 4. w? and w~ refer to the Lightman-Eardley and to the
thermal mode respectively. The lower branch applies when con-
dition (90) is satisfied. For the solid line condition (102) is ful-
filled.

3-5B8,-305> 0. k (102)

In Figure 4 we plot w = w (&, By, \) where wt and w”
refer to the Lightman-Eardley and to the thermal mode
respectively. The lower branch applies when condition
(90) is satisfied.

For \; < A < A, perturbations grow oscillating in the
upper branch and oscillate with damping in the lower
branch. At A = A; (upper branch) perturbations just os-
cillate. For region 1, optically thin, assuming as Shapiro
etal. (1976),y =1 always, we have

T . (103)
TO
By (104)
8,

Equation (94) is a direct consequence of the assumption
of constant soft photon flux through region 1. Equation
(94) yields k = 1 and s = 1. The expressions for m and n
given by equation (78) are

l+ao—Bo
m=———--- )
Qo
(105)
_ 1 -a — 2B
200 (1 — a9 — o
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same stable solution for the thermal and dynamical
modes.

We have shown that the inner region is dynamically
unstable. However, this may be due to the use of a local
criterion for stability, which is independent of boundary
conditions that take into account the discontinuities on
passing from region 2 to region 1, as well as the ex-
istence of the corona.

Finally, we should comment that despite having a dif-
ferent equation to determine the point where the insta-
bility develops, the transition point, the adoption of the
same value of Shapiro et al. 1976 does not lead to a no-
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A
[ 3+ I . 3~
. /
/ [ ]
L] / ®
. / *e
/ ..
3 ¢ /
./ :
[o]

Fig. 5. w = w (A, ag, By) for this part of the disc. The dashed
line corresponds to the case 3ag + 965 > 2.

In Figure 5 we plot w = w (A, a,,8,) for this part of the
disc, where the dashed line corresponds to the case
3&0 + 960 > 2.

1X. CONCLUSION

The model we have constructed reproduces quite well
the observational data of Cygnus X-1. This result is to a
certain extent dependent on the existence of region 3.
Though the physics of this region has been avoided, the
condition for its existence is given as a boundary condi-
tion on the surface of the thick disc, i.e., the matter in
the region 3 supplied by region 2. This region presents
stronger condition for candidacy as a source of soft X-
ray than the thick disc, because the latter would require
a very high luminosity enhancement factor for compto-
nization. However, we do think that a more detailed
treatment of this region is required in order to test the
credibility of model.

From the stability analysis in region 2, we have con-
cluded that the role of the turbulent pulsations should
be taken into account, because they may drive the disc
to instability for a lesser value of fg, the relative radi-
ative pressure. Concerning the viscosity, we should re-
mark that in region 1, it is highly dependent on the soft
photon flux. We also should comment that for the spe-
cial viscosity law (m,n) = (0,1) ((0,0) in the analysis of
Piran 1978), which leads to a stable disc, we obtain the

ticeable inconsistency.

We wish to express our gratitude to Dr. Oscar Matsura
for reading the manuscript and helpful suggestions
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