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RESUMEN

Se demuestra la existencia de figuras de equilibrio para un cuerpo fluido,
autogravitante y libre de presién externa, que consiste de dos elipsoides confocales de
distinta densidad que giran con velocidad angular comin. El andlisis muestra que a
cada valor asignado a la densidad relativa del cuerpo, le corresponde un solo radp de
achatamiento, es decir, no puede existir una serie. Otra conclusién es que la densidad
relativa posee un limite inferior (tal que la densidad del elipsoide interior es ligeramente
mayor que el doble de la del exterior) y al respecto se ofrece una explicacién semicualitativa.
Se asume que el fluido es ideal e incompresible.

ABSTRACT

For a self-gravitating and free from external pressure fluid body, consisting of two
homogeneous confocal ellipsoids of different density rotating with common angular velocity,
we demonstrate the existence of equilibrium figures. No series is possible, however, since the
rotating body attains, for given values of its relative density, a unique degree of flattening.
In addition, the analysis shows that there is a lower limit to the relative density (in which
case the density of the interior ellipsoid is only slightly larger than twice the density of the
exterior one) and a semi-qualitative explanation on the subject is offered. The fluids are

assumed ideal and incompressible.
Key words: HYDRODYNAMICS

I. INTRODUCTION

Incompressible, self-graviting homogeneous flu-
1s are known to adopt the spheriodal form (fol-
owing McLaurin) or the ellipsoidal one (following
acobi) when rotating at constant angular velocity
bout the figure’s minor axis. The spheroids, which
nust be oblate, can have any value of angular
nomentum while the ellipsoids require for their
:xistence an angular momentum greater than a
ertain finite value (Lyttleton 1951).

In this work, we undertake the problem of
:quilibrium figures for a rotating composite fluid
ody. The specific model consists of two concentric,
inequal density ellipsoids, each of which is made
ut of an incompressible, homogeneous, ideal fluid,
vith the additional assumption that the body as
i whole, is self-graviting and free from external
ressure. The model may be thought of as an
:llipsoid of a given density surrounded by another
llipsoid of lower density. ~We have therefore
etaken, to express it in a figurative way, Jacobi’s
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research line, inasmuch as the present model also
involves ellipsoidal geometry. We study the special
case in which both ellipsoids of the model assumed
to be confocal share a common angular velocity, and
we inquire about equilibrium figures by the suitable
application of boundary conditions.

The selection of a common angular velocity,
rather than the case in which each homogeneous
part rotates with its own, was dictated by the
wish to overcome dynamical effects; the confocality
assumption, on the other hand, is adopted for the
sake of mathematical economy (see next section).

II. POTENTIAL AND EQUILIBRIUM CONDITIONS

In this section, we shall show that the application of
suitable boundary conditions on our model yields a
set of equations, the analysis of which will determine
whether or not equilibrium figures are possible

a) Homogeneous Fluids

Since our model requires the consideration of
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homogeneocus fluids, we begin by writing out the
potential of a homogeneous ellipsoid.
i) The Potential of a Homogeneous Ellipsoid.

The interior potential of a homogeneous ellip-

soid is given by the integral relation (Chandrasekhar
1969):

® du z2
B =G w5 ),
w Palaza3/0 A( a?_*_u) (1)

where p is its density, a3, a3, a3 its semiaxes, G the
gravitational constant and

4= [(a% + u)(a% + u)(a§ + u)] 1/2.

Expression (1) can indiscriminately be used
for exterior points as well, if ), the cllipsoidal
coordinate of the considered point, i.e., the positive
root of the cubic equation

2
1

T
Z‘;a?-{-

is taken as the lower limit of the integral.

=1, 1= 1,23 ()

it) The Equilibrium Conditions for an
Arbitrary Homogeneous Fluid.

If the fluid is at rest and under the action solely
of conservative forces, the equilibrium condition is
provided at once by Euler’s equation particularized
for zero velocity and integrated over the volume of
the fluid (Milne-Thomson 1968):

p = pB + constant, 3)

where p is the pressure, p the density and B the
gravitational potentdal. If, however, the fluid is
rotating (as we will assume henceforth), then eq. (3)
must be modified into

2
p/p =B+ %(z% + zg) + constant, “4)

where & = wk, and k is the unit vector along z3,
the rotation axis. In particular, on the surface of
the fluid eq. (4) becomes

2
B+ w?(z% + a:%) + constant = 0, )

if the fluid is to be considered free from any external
pressure.

Calling ¢ the left hand side of eq. (5) and
writing the surface equation as f(z1, z3, z3) =0, the
following ratios must be satisfied (Lyttleton 1951)

Pz, /fz, = P23/ fzy = Vzs/ fzs, 6
where the x, subscripts stand for partial derivatives

b) The Model

We now turn our attention to the model (we
shall currently refer to its innermost ellipsoid as the
“nucleus”and to its envelope as the “atmosphere”).
We designated by the subscript n(a) quantities
pertaining the nucleus (atmosphere) and, as a first
step, we derive the potentials Bg(z1,z2,z3) and
By (z1, 22, z3), at each point of the atmosphere and
nucleus, respectively. We assume pp, > pq.

1) The Potentials.

The derivation of B, is accomplished by fol-
lowing the sequence of steps indicated in Figure
1 of our previous work on spheroids (Montalvo,
Martinez and Cisneros, 1983). We have

® dy z?
== 1_2 ( i -
”“““‘“"’““3/0 Ay ( a2, + u)

*® du z?
+ - —( 1= i t ,
(Pn Pa)amanzans o An ( a%‘. + u)]

@)

B, = ¢G

where

Qg (aal > aq, > aas)

and

tn;(an, > an; > an,)

stand for the semiaxcs of the atmosphere and the
nucleus, respectively; here

A [(agl +u)(a2, +u) (a2, + u)]l/z

and

A = [(agl +u)(a, + ) (a2, + u)] 1'/2

The expression for By, is also given by eq. (7)
writing A = 0 as the lower limit of the second
integral.

i) The Confocality Condition.

As in our previous work, we limit oursclves to
treat the case in which the nucleus and the atmos-
phere are confocal. The hypothesis of confocality,
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vhich can only be fully justified a posteriori, is for
he sake of mathematical simplicity, because in this
rarticular ellipsoidal geometry, the quantity X [see
)q. (2)] is constant over the external border of the
rody. With this in mind, we have

2 2 2 2 2 _ . 2 .
a; = n, T2, ag, = ap,+A,  ag, T ap tA;
T, equivalently

2 2 2 2 2 2 2 2

Qpy —Opy = Qpu€ny, Gpy — Qpy = Qp€ng,

2 2 .2 .2 2 2 .2 .2
%a; T @az T %ay%ay> Gay ~ Bay = %a,Cay)

shere the convention is made that en,(eq,) and
nz(€az) stand for the equatorial and the meridional
ccentricities of the nucleus (atmosphere) respec-
ively.

As a consequence of the above expressions, there
esults:

enl aal

(4 a
=-—1>1 and 22=s51 (8
€ay Ay €ag Qn,y

rhich means that the eccentrities of the nucleus are
teater than those of the atmosphere.

Further, from the confocality condition it also
sllows that

€y __ €qy

P &)
o the eccentricities cannot be independent of each
ther and one eccentricity, say eq,, can be dropped
ut of the problem; henceforward in our treatment,
1is eccentricity will not appear.

i) Boundary Conditions for
Rigid Body Rotation.

We now proceed to obtain expressions for the
ngular velocity of the body in terms of the densities
nd the eccentricities, as well as the elliptic integrals
‘hich are implicit in the expressions for B and By,

To this end, we will apply the condition already
pecified in the introduction, namely, that the body
. to be considered free from external pressure; in
ddition, we demand continuity of the pressure at
1€ boundary surface between the nucleus and the
tmosphere (Landau and Lifshitz 1959).

Displaying the above conditions in more detail
1ey read as [see eq. (4)]

p=Bq + éwz(z% + :c%) + constant = 0, (10)

nd (defining ¢ as the left side of p; — p, = 0)
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¢ = paBa + 1/2 paw? (22 + 23) -

— pnBpn —1/2 pnwz(zf + :z:%) + constant = 0, (11)

respectively.
Consider first eq. (10). From eq. (6) and
2 2 2
z z z _
fa=—-+ L+ -1=0,
Gal aaz aaa

the surface equation of the atmosphere, we obtain
the following two expressions:

02 = [(1 - 8%1)1/2(1 - ezlz)l/z(l — ezz)

ena(¢h, —eh)

_aﬂwmuﬂm”}m

2
€n; ‘nl

1/2 1/2
LT A R (T N

2
c"zenl

+ [cﬂz (egz — cg‘egz)l/z(l - 632)3/2

632 (e?n - e%‘)

ena (cizlz - ezu c32)1/2(1 - c§2)1/2

+

Fo

e2 e3
ny-az
- 602(1 — 6%1)1/2(1 — e%z)lﬂ(cﬁz _ 6'211633)1/2(1 - 622)1/2 e
c?‘z (c?lz - cg‘l)
_ (ng — C?HCZ:) (1 - ‘Z:)
el (ed, —¢,) 7

(12)

and

g2 [ema(t=2 ) 1= "1 -e2)
(€2, — ek )(e2, —eZ.e2,
eny(1- e, )2 (1-e2,)"/?
+ 3 ! 2 3 2 ek,
eny (eﬂz - cnl)
_ (1 - e?ll)l/z(l - 632)1/2
en:c?x,
[ °§'z (‘l - 632)3/2
€3, (2, — ek e2,) ?(e2, ~ ek,)
+ c?m (1 - 832)1/2(622 - C?xl C?Iz)llz Ea
eglzegz (e?lz - e"l)
_ "‘2(1 - 632)1/2(63‘2 - 5%1‘!32)1/2 F
62 63 e
n1-az
2ea(1-e2 ) P12 Y2 (1 - o2 )V
(e%z - c7211 632)1/2 (8?., - e?u)
_ 2872!: (1 - egz)

€2, (ed, — e2,)* (13)

eF,
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where

Pn — Pa
= . and €=
44Gpa Pa
and
¢ 2 o2 -1/2
F, =/ €aq (eg2 - —n‘Z-J‘—’-sinzw) dw,
0 €nq

(2 2 1/
Ea=/(; (eaz—enlezzeﬁzsm2w> c;:dw,

are the familiar elliptic integrals of the first and
second kind, respectively, with their upper limit

given by ¢ = cos"l(l 502)1/2 (MacMillan 1958).

In an entirely similar way, and using the fact that
A vanishes at the interface nucleus-atmosphere, we
obtain from equations (11), (6) and

2 2 2
=51 L T z3 =0
fn=—t+5+ - ’
%y %ny  Gng

the surface equation of the nucleus, the following
two expressions:

o [@ )2
€na (67212 - e72'1.1)
1/2 1/2
_=eh) - e)Y ]E
€n2€n,
1/2 1/2
L HRCCT A R
‘nzcnl
+ren2(1 cnz)(enz—cnleaz)l/z(l ea,z)l/2
l Gz(eﬂz e?u)
_ema(1- ea,)(en,—eilem)‘”]E
2 .3 a
el e .
eng (1 —€2,) (€2, — €2 €2 )'/?
+' 2 3 - Fh
eX e
)
(e%z—c%l)
_(1_61212)(67212 enleaz)
egz(e%z C%l) (14)

and
02 = [ (1 - cn2)3/2
€ny (1 - 62 )1/2 (enz - e"x)

emy (1= 2,) V21 ¢ )”"]eE,,

ni
el (e2, —eZ,
C(=g)Pa-a)?
enz‘%;
L [emal1- ez.,)(es:, —eZ 2 ) (1-e2)"?
3, (1-e2,)(c2, — ¢&,)

1/2

eF,

(cnz e?,l ‘32) /2

23 2 _ .2
cn ea (en enl

€ngy (1 — e,,z)l/2 (en2 e,,,leaz)l/2

+ en2 (1

Eq

+

1-ep)(ed, — cnxeaz) (15)

ctzlz (e%z nl) (1 - enl

where

¢ e
F, / 12 dw,
" (62 -_ eﬂl sm.zw) 1/2

1/2
E, = /5 (enz - c%lsm w) / dw,
0

€ng

are the corresponding elliptic integrals, with the
upper limit given by ¢ = cos™1(1 — 6'2‘2)1/2.

Before going on any further, we may notice,
by the way, that the well known results on equili-
brium figures for rotating homogeneous ellipsoids
(Jacobi’s figures) are self-contained in our equa-
tions: If we let en, — €q4,, and en, — €q,, as € — 0,
into them, we find that eq. (12) goes into eq. (14)
and eq. (13) goes into eq. (15). These two remain-
ing expressions yields numerical values for 22 that
are in agreement, up to a factor of one-half (be-
cause of different definitions) with Jacobi’s figures
(Lyttleton 1951).

III. EQUILIBRIUM FIGURES

We now analyze our expressions for the angular
velocity, and it will prove convenient to unfold
the conclusions of such analysis into three major
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aspects: 1) the existence of equilibrium figures, 2)
the existence of a series can be ruled out, and 3) the
existence of a lower limit on the quantity .

a) The Existence of Figures

We have seen that the condition that our body
is free from any external pressure [eq. (10)],
together with that of the continuity of pressure at
each point of the boundary surface between its two
homogeneous parts [eq. (11)], leads as a result the
two couples of equations [(12), (13)] and [(14), (15)],
respectively. Individually, each of these equations
expresses the angular velocity of the body in terms
of its eccentricities en;, €q;, its relative density ¢ and
the elliptic integrals denoted by Fyp, Ey,, Fq and E,.
We may summarize them altogether by

2
n "Gi(enucnzaeazxe)a

with the 7 subscript running from 1 to 4, ie,
equations (12)—(15). The explicit form of each G;
of such equations may briefly be writen as

€En(xli) + an(ZZt')"" Ea(z&')'*'

Fa(z4;) + e(z5:) + 1(ze:)s (16)

in which z;, zg;, ..., denote certain algebraic
expressions in the eccentricities, different from each
other and, further, different from one equation to
the next. We note, however, that all four terms
Frn(z2;) [and all four terms Fg(z4;)] are identical
except for an algebraic sign, which changes from
one equation to the next.

So far, the existence in principle, of equilibrium
figures for our model is clear, since our equations
can be seen choosing the relative difference in
density € of the body as a parameter, as a set of four
equations involving four variables: ey, , €n,, €q,, and
n?.

b) The Exclusion of a Series

Before going on further, it is well to ask about the
consequence that, a priori, would mean the insertion
of relation (9) (i.e., the dependence among the
eccentricities, result of the confocality hypothesis) in
our analysis.

In particular, we are interested in knowing if
a relationship among the four equations exists so
that not all of them are independent. If such a
relationship exists, the possibility of a continuum of
solutions (a series) is open, since in this case one of
the equations could be eliminated and the system,
for given ¢, has an infinite number of solutions.

Such a continuum of solutions would then repre-
senta whole family of figures with different eccentri-

P

cites and angular velocities, for each pre-fixed value
of the body’s densities.

We now proceed to show that no linear depen-
dence exists, excluding therefore the possibility ofa
series.

The starting point is to assume the existence of
a set of factors of a linearity relation among the
equations and we show that a contradiction arises.

Calling ¢;(¢ = 1, 2, 3,4) such factors, the linearity
condition (an identity) is expressed by

Q1 (.02 - Gl) + q2(02 - G’g) +
+g3(7? - G3) + u4(P®* - G4) =0

Notice that such set of factors has to fulfill the two
restritions: i) ¢ + g2 + ¢3 + ¢4« = 0, and ii)
q1— 92 + q3 — g4 = 0. Restriction i) is a consequence
that 22 is an independent variable, and so that

(g1 + g2 + g3 +qa)2% =0

in the above identity must be zero. Restriction ii),
on the other hand, is justified as follows. Consider
expression (16), which represents the typical form
of the right-hand side of any of equations (12)-(15).
In particular, as was previously quoted, the terms
Fn(z4;) are, except for an algebraic sign, identical
in the four equations, and the same applies to the
terms F,(z4;). Therefore we have that, for instance,
Fn(q1— 92 + 43— q4)z21 = 0 and Fo(q1 —q2 +¢3—
g4)r41 = 0; restrictions #) then follows, since F, and
Fq are independent of each other. Accordingly, the
q’s are reduced to only two: q; = g3 and g2 = —g4.

From the above reasoning the linearity condition
turns to be ql(G'l — G3) + Q2(G2 - G4) = 0,
suggesting that ¢ factors can be found only from
solely the differences among equations given by
[(12)-(14)] and [(13)-(15)]. Either of these two
differences can, with the same notation as that for
expression (16), be writen as eEn(z1) + Ea(z3) +
e(z5) + l(zg), because the terms eFp(zy;) and
the terms F,(z4) then cancel out. The process
of finding the q factors may now be initiated by
demanding the terms 1 (zg) to vanish, in which case
it is found that the ¢ factors must fullfill the ratio

a (en, — ehi)

92 - ( 1- e?u)(e%z - 6%1832) .

These two factors allow the cancellation of the
terms € Ey, (z1) and the terms Eq(z3) as well, but they
do not cancel the terms &(zs) and, reciprocally, it
can be found that the factors which cancel the terms
(zs) do not cancel the rest of them. Hence, we have
reached a contradiction, and the assumed existence
of a linear dependence among our equations is not
obtained.
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A series solution for-our problem, in the manner
of McLaurin’s or Jacobi’s homogeneous fluids must
therefore be ruled out. Stated differently, for
the assumed geometry of our model (confocality
of the ellipsoids), only one figure (with specific
eccentricities) can fit mathematically for each value

of
e( = Pn“Pa) )
Pa

This result, though restricted, is nonetheless
surprising for it sharply contrasts with the toial
absence of equilibrium figures for the two-axis
model (and-.in which, as here, wy = w; = w)
(Montalvo, Martinez and Cisneros 1983).

b) Numerical Results

In what follows, numerical results are presented
for the parameters that describe equilibrium fig-
ures. We will see that there is a given range of ¢
in which no figures exist at all, however.

This is the essential content of Table 1, in which
the (unique) set of eccentricities (columns 2, 3, 4,
5) and angular velocity (column 6) that the body
attains for each particular value of & (column 1) are

given.

Notice that €, which measures the relative degree

/

of the body’s inhomogeneity, is taken greater tha
zero: the values less than —1 must be exclude
since € = pp/pg —1, and negative densities are nc
allowed. On:the other hand, if -1 < ¢ < Othe
it follows that pq > pn > 0, but we cast'away this cas
since in real stars the nucleus is commonly heavie
than the atmosphere.

Quite apart from this ad-hoc restriction on
we have no hint from previous work either
others or ourselves to expect a limiting value fc
€. Numerical analysis tells us, however, that th
existence of figures with e, > €5, and en, > ¢
[as required by relation (8)] is conditioned to valuc
of e greater than 1.1839682 (see next section). Th
value corresponds to a situation in which the densii
of the interior ellipsoid turns out to be slightly large
than twice the density of the exterior one.

In Figure 1, a scheme of the body’s relative shap
for each of three different £ values is shown: (;
e = 2, which is not very far from the limit, (

‘e = 10, and (¢) € = 50 (see the correspondin

values of eccentricities and angular velocity ¢
ttalics in Table 1). Thus, for low & values (sligl
inhomogeneities), but of course greater than tk
limiting value for which equilibrium figures ca
exist, i.e., case (a) the interior ellipsoid possesses
rather moderate equatorial and a high meridion
degree of flattening. As € grows to 10, case (t
and then to 50, case (c) the equatorial sectic

TABLE 1

PARAMETERS DESCRIBING THE EQUILIBRIUM MODELS OBTAINED FROM EQUATIONS [(12)-(15)]

a w? T H c'
€ €ny ©na €ay €az Frxerm GM3r—1 Q12 pf3]3 ,1/2 27 Gp2 a'zsl 27 GpZ a2
1.1839682 0.6388 0.8986 0.517  0.7272 0.136428  0.0556 0.2423 —1.1011 —1.1318
1.195 0.6029 0.8977 0.4675 0.6961 0.1206 0.0513 0.2269 —1.198 —1.3441
1.2 0.5956 0.8977 0.4576 0.6896 0.1174 0.0503 0.2237 —-1.22 —1.3954
1.5 0.468 0.9107 0.2858 0.5562 0.0624 0.0305 0.1638 —1.885 —-3.3757
2 0.393 0.929 0.1947 04602 0.0375 0.01973 0.1288 —2.8128 —7.3712
3 0.3197 0.9501 0.1217 0.3618 0.0208 0.0115 0.0975 —4.69 —19.59
4 0.2782 0.9615 0.0889 0.3075 0.0143 0.0081 0.0815 —6.6 —37.69
5 0.25 0.9687 0.0701 0.2719 0.0109 0.0062 0.0714 —8.55 —61.72
10 0.1792 0.9838 0.0341 0.1876 0.0049 0.0029 0.0483 —18.42 —271.63
15 0.1471 0.9891 0.0225 0.1518 0.0031 0.0018 0.038 —-28.37 —631.38
20 0.1278 0.9918 0.0168 0.1309 0.0023 0.0013 0.0334 —38.35 —1141.1
25 0.1145 0.9934 0.0134 0.1167 0.00618 0.0011 0.0297 —48.33 —1800.79
30 0.1047 0.9945 r.0112 0.1064 0.0015 0.00091 0.027 —58.32 —2610.48
35 0.097 0.9952 0.0095 0.0983 0.0013 0.00078 0.025 —68.31 —3570.16
40 0.0908 0.9958 0.0083 0.0919 0.0011 0.00068 0.023 —78.3 —4679.84
45 0.0856 0.9963 0.0074 0.0866 0.001 0.0006 0.022 —88.3 —-5939.51
50 0.0813 0.9966 0.0066 0.0821 0.0009 0.00054 0.02 —98.3 —7349.18
.| 100 0.0576 0.9983 0.0033 0.0579 0.00044 0.00026 0.014 —198.2 —-29695.¢

a. ¢ is the relative difference in density between nucleus and atmosphere, ep,, €n,, €ay, €g, are the equatorial (1) a
meridional (2) eccentricities for nucleus () and atmosphere (2). w, T and H refer to angular velocity, kinetic energy a1
angular momentum of the body. C, C are constants appearing in egs. (10) and (11) respectively.
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b)

c)

g. 1. A schematic view of three figures: (a) for € = 2,
) for € = 10 and (c) for € = 50.

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System

slowly tends to a circle whereas the meridional
flattening rapidly grows so that the nucleus tends
to become a disk. As the exterior ellipsoid, it
starts with a low degree of equatorial flattening and
a moderate meridional one, which more or less
rapidly tends to zero. Thus, the shape of a very
inhomogeneous figure resembles a central bulge,
much as if the yolks of two fried cggs were piaced
back to back, surrounded by a nearly spherical
much more tenuous mass.

From the above considerations, we may state that
although the body’s velocity is independent of the
size of the body, it does depend on the relative sizes
of its two homogeneous parts.

c) On the Existence of the Limit

We have established on purely numerical grounds
that ¢, the quantity that stands for the relative den-
sity of our model, is limited to values higher than
1.1839682 (called €9 henceforward) for equilibrium
figures to exist.

In this section, we look for (under two different
approaches) the source of limit 9, supporting
its existence by the inference that a disrupting
mechanism begins to act on the body as soon
as € approaches gg from nearby, higher values.
Notice at the top of column 6 that the angular
velocity itself has an unusual increase precisely
within such interval and we therefore already have
a strong hint as to the existence of eg, since a
very large value of angular velocity means, in effect
a disrupting mechanism of the body. Our first
approach considers the body’s kinetic energy (T)
and angular momentum (H). The first quantity,
when normalized to GM2r~1 (column 7) is given
by

it = (59%)

X €ay 5(2-e,2,1)(1—cgl)l/z(l__eiz)l/z
[1+€( )(2—e?.l)(1--631)1/2(1_632)1/2]

enl

enl

-2
o3 (1= )21 3, )2
X[l+€( ) (1—6%:)1/2(1*‘32: 1/2

x[(l—ea,()z”_“(cfg ez.,)"“}’

while H? when normalized to GM?3r (column 8), is
given by
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H = (inz) (1 (2 eaz) :

GM?*r \25 c‘11)2/3( _ 622)2/3

€a, ( )(l—c 1/2(1 )1/2
[1+ (Cnl) ( 2 — e )(1_62 )1/2(1 )1/2]

ea\3(1 =3 ) P (1= 2,) /P73
x[l-i-e(——) (1_601)1/2( cﬁ, 1/2] ;

Cnl

where M is the body’s mass and r = (aalaa, aas) 1/3

For completeness of this first approach concerning
the existence of gg, we calculate the constants which
appear in eq. (10), C, and in eq. (11), C. If
the existence of g is taken as granted, then C and
C can be expected to show a tendency to vanish.
Such tendency would mean on C, the approach to
the final body’s bound states; on C, on the other
hand, it would mean the violation of the continuity
of pressure at the interface nucleus-atmosphere.

The values of C and C, when normalized to 2 -

Gp? a?,l are given in columns 9 and 10.

The manifestation of the previously quoted ab-
normal behavior within a small interval of € values
greater than, butin the neighborhood of g, is clear
in all of the four analyzed quantmes T, H, C and
C’and the two constants have, in addition, a remar-
kable tendency to vanish, in agreement w1th our ex-
pectations.

We now try to understand the existence of limit
eo from a different point of view. We believe
that, as 22 grows (and e decreases, see Table
1, columns 1 and 6), a situation will finally be
reached where it is impossible to fulfill at least one
of the equations (12)—(15), because 7% overrides
the remaining part of the equation [see any of
egs. (12)—(15)] and therefore no model is possible.
In order to see in which equation the unbalance
occurs, we proceeded as follows. We took f22
slightly greater than the limiting value of 22 (that
corresponds to e€p). We then (artificially) took
2 smaller in the first equation of the system, by
subtracting from it a small quantity, and found

that the altered system admitted no solution. I
the same way, we proceeded with the second anc
third equations without success. However, whei
the fourth equation was changed, a solution of th
system could be found, showing us that in thi
equation arose the unbalance, responsible for th:
limit. We recall that this equation i.e., eq. (15,
corresponds to the equality of the second and thir
ratios of eq. (6), as applied to the quantity ¢, buil
from the condition of continuity of pressure [ec
(11)] at the nucleus-atmosphere border. Going on.
little further, let us write the parent equation of ec
(15) [see eq.(6)] as

(Fy + Fo)z2 _ (Fg)z3
Azs Bz’

where Fy stands for gravitational force, F, for cen
trifugal force, A and B being constants (notice tha
there is no third component of centrifugal force pre
sent since our body rotates around the third axis;
Therefore, the equality sign of the above equatio;
which applies only when the body is in relative hy
drostatic equilibrium, no longer applies in conse
quence of the relative large increase in angular velo
city, € approaches €p, to which the centrifugal forc
is directly proportional. Equivalently, the existenc
ofeg may be attributable to the violation of the equi
librium condition given by eq. (11). Therefore
there is a total absence of equilibrium models fo
€ values smaller than eg.
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