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RESUMEN. Se presenta una versién Newtoniana de los modelos
cosmolégicos espacialmente homogéneos e isotr6picos con
masa variable. La influencia de la variacién de masa en la
evolucibn de la funcién de escala est8 establecida para el
caso de un Universo lleno de polvo bajo la suposicién de
que esta variacibn es un efecto estrictamente cosmolégico.
Se muestra gque el carfcter hiperb6lico, parabblico o elip-
tico del movimiento de flufdo puede ser modificado a lo
largo de la expansidn.

ABSTRACT. This paper presents a Newtonian version of the
spatially homogeneous and isotropic cosmological modelswith
variable mass. The influence of the mass variation on the
evolution of the scale function is established for the case
of a dust-filled Universe under the assumption that this
variation is a strict cosmological effect. It is shown that
the hyperbolic, parabolic or elliptic character of the
fluid motion can be modified alony the expansion.
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I - Introduction

Different theories of gravity, alternatives to Einstein’s general
theory of relativity, have been proposed in which either the gravitational
constant G andsor the rest masses of the objects vary with time. Recently,
Wesson (1983, 1984)> discussed the difficulties encountered by these
different approaches and proposed a variable mass theory of gravity where
the mass 1is regarded as a geometrical coordinate in a continuum 8D
space-time-mass. In some sense, the usual 4D Einstein’s theory would be
embedded in it. McCrea <1978) pointed out that in a theory with time
dependent gravitation it seems more plausible to let the mass change with
time rather than the gravitational ¢onstant. G, since m is the source of the
field. This requirement is fulfilled by Wesson’s theory.

Here we intend to investigate cosmological models generated by
the newtonian theory of gravity with variable mass as suggested by McCrea.
In principle, one should expect to find cosmological models which are close
to those furnished by the correct relativistic theory with variable mass,
as it happens with Einstein’s and the standard newtonian theory.
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II -~ Newtonian Models with Variable Mass

We shall follow the same procedure used by McCrea and Milne
(1934)> for constant mass but considering that in the present case the mass

is a function of time. Of course, it will be necessary to modify the
continuity equation. We consider an homogeneocus and isotropic pressureless
material medium <ddust)>. In this fluid, let us imagine a particle with
velocity v at a distance r from an observer. If its mass is m and p is the

density of the medium, the particle equation of motion G dﬁ/dt.) reads

1 dm av av 4 .
ﬁ—m--—v*' “-G-v F = -—-3——"(691 >

We suppose that m and p are functions of time t alone. Since the mass is no
longer constant but varies with time, the continuity equation takes the

form of a balance equation with a source term

1 a
1—:{-+——(r2v)=
e ar

dh . .
-t 2>

T

where h is a function of t. Since we assume homogeneity each term of

Equation (2) is independent of r. In particular, the second term

1 a
2 1 dh _ 1 dp
'rzz(rv) " § &t > "at = 3 FdtD a3

can be integrated with respect to t and leads to

v {r,tdD = r F> . 4>
Equation (1> then becomes
F+F+ P p o -2 14 B>
™ 3 (=

Integrating <(4> we obtain r = T, R(t.)/Ro, where r, is the radius for
R(tO=R  and R(L) satisfy

- = > . 6>
Using (3) we have
R 1 h _ 1 p
w® 3 h 3 5 N
which after integration gives the following expression for the density
3
R
P = o [—9-] -—E—- . @
R o

On “the other hand, since the mass inside the sphere of radius r is M = 4/3
s
T o r, we can write, by using Equations (6> and (8,

h
ML) = M(t.o) —_l'-:: . <9
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Thus, if hdt) varies with time, the mass in a comoving volume is not
constant.

Now we examine the functional form of hd(t>. The mass should
change very =slowly with time so that ddh-s/dt>/h =< 107" y):~_1 as suggested by

Wesson (1983). Also, we make the assumption that the variation of mass is a

cosmological effect and put h-s/h proportional to the relevant time scale of

the problem, that is, the Hubble time:

L S —g— 10>

Integrating this we have
R 12
h > = h —_— 11>
o) 33
o
Inserting the above expression, together with Equation (6> and (9> into B>
we obtain
. ‘2 o=1
RR + a R + AR = 0 12>
with the constant A = 41‘[(3902;/3.
One can compare (12> with the equation found by McCrea and Milne
{1934> for constant mass

RE + AR' = 0 13>

We see that Equation (12> is identical to (13> if o = 0, which corresponds
to the limit of constant mass.

The first integral of (12> is given by

2 -2Q 2 A o1
if o=1/3, and
R+ kR?*® = AR?Y? In ar> 15>

if o=1/3. Here k 1is an arbitrary constant. As may be easily checked, if
a=0, Equation (14> reduces to the first integral of 13).
Particularly, if we take o<1/3 and k=0, Equation {14) reduces to

"2 2 A -1
R = g3 R

and therefore

1

3-o0% A ai—a
R = . t b Raks §

2 (1-3a0

For a=0, that is, no mass variation, this gives the standard result R

t>® for the parabolic dust model.
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It is remarkable that for this model the deceleration parameter

is given by

- - RR _ d-w
q z

-Thus, if the mass decreases 1in the course of time, we can take, for

instance, o=-1 to obtain q=1. This is just about the present value of the
deceleration parameter furnished by the luminosity distance versus
red-shift relation. In what follows we discuss the rhysical meaning of the

above equations. For simplicity we consider only the case o=1./3.

III - Discussion and Conclusion

Let us compute the escape velocity of a test particle with
variable rest mass. Combining Equations <(6> and 14> we can write the

kinetic energy of the particle by unit mass as

2 1 2 G M

12l pen?a + ECt> 16>
2 2 x
where
1 -20 3 a A’ o1
ECt) = - = k R + 35— R 17>
Po 2 [¢] MO
and A’ m A | —0o = — 18>
R T
© o

The positive constant A’ is the same for all particles of the fluid. The
integration constant k may assume negative, null or positive wvalues. It is
Just minus twige the constant value of the total energy of the particle for
a=0. In this particular case if k is greater, smaller or equals zero it
follows that v is smaller, greater or equals to the escape velocity. For
a#0 such an interpretation does not remain valid since the effective total
energy in 17> is now a time dependent function. As a matter of fact, in
the framework of classical mechanics, the sum of kinetic and potential
energy is constant only if the forces acting in the particle are
conservative. Of course this is no longer the case since the mass is an
explicit function of time. As a consequence, in the standard model Cam0),
there is no inversion of motion (recolapse) if k=<0 <(parabolic or hyperbolic

cases). The models will expand forever. However, for a non-zero and greater

than 1/3 and k<0, there is a finite value R®(R_> for which R(R*>=0 and K<0
(see (14) and <12)). Thus, in these cases we must have a recolapse of the
fluid system. This result may be interpreted by saying that the growth of
mass compels the test particle to diminish its velocity below to the

instantaneous escape velocity.
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Note also that if k=m0, Equation <14> shows that the solutions are
expansionist. for all values of o equal or less than 1/3. In this case, we
have from <17) that the net energy may be positive if 0<ak1/3 or even
negative if o<0. However, the "open" character of the models may be easily
understood from 17> if one takes into account that the energy goes to zero
for large value of the cosmological time, independently of the finite value
assumed by the parameter o.

The analogy between the solutions presented here and a full
relativistic model with variable mass could, in principle, be anticipated
by deriving a "Friedmann type equation”. For that, we add Equation 12>
with one half of (14> to obtain

. 1 -2 1 -20 3 a A -1
RR + [a+%]é’+%k"-o 20>

where the effective curvature parameter k"| is nothing but minus twice the
total energy of a fluid particle (see Equation d17>). Equation (20> has the
same appearance of the Friedmann differential equation obtained from the
General Relativity. Apart from the o factor multiplying R’ the main
difference 1is that the curvature parameter is now a time dependent
quantity.

Note that if a=0, then k‘ reduces to the constant value k of the
usual Friedmann model. This result indicates that. in a consistent
cosmological relativistic model with wvariable mass, the curvature parameter
must be a function of time. Accordingly, the open, close or flat. character

of the models must vary along the cosmic evolution.
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