THE MAGNETIZATION OF THE INTERGALACTIC MEDIUM
BY EXTRAGALACTIC JETS

L.C. Jafelice¹,² and R. Opher²

1. Faculdade de Ciências Matemáticas e Físicas
da Pontifícia Universidade Católica de São Paulo.
2. Instituto Astronômico e Geofísico da USP, Brazil.

ABSTRACT. Observational studies indicate evidence for the magnetization of the intracluster medium for some clusters of galaxies, whereas it is still an open question if the intercluster medium is permeated by magnetic fields. The origin of the intracluster medium magnetization is not solved yet. Existing theories proposed up to now, and their limitations, are briefly discussed. We propose an alternative theory based on the observed common phenomenon of extragalactic jets (EJ). We consider the time evolution of a current carrying EJ, and the associated return current closing the circuit. For the return path, the Lorentz force is expansive. We assume that such an expansion occurs at the local Alfvén velocity and calculated numerically the radial distance from the jet axis which the return circuit reaches. Calculations are made for parameter values observed for the extragalactic sources Cygnus A, NGC 6251, 3C465 and M84. The results obtained can explain several magnetic features observed in these sources. The possible importance of previous generations of EJ in the large scale magnetization of the intergalactic medium is also discussed.

Key words: GALAXIES—JETS — HYDROMAGNETICS

I. INTRODUCTION

In the present work we study the magnetization of the intergalactic medium due to
magnetic fields generated by extragalactic jets (EJ) from galactic nuclei. Although such a process has been mentioned in a generic form (e.g., Dreher et al. (1987); Rees (1987)), it as not been discussed in detail nor its implications have been analyzed.

I. THE MODEL

We analyze a current carrying EJ and the corresponding return current (J ret) closing the circuit. The Lorentz force (F L) for the return path is expansive. We assume that the expansion occurs at the local Alfvén velocity V A(r,h) and calculate numerically the radial distance (r e) from the jet axis which the return circuit reaches due to this expansion (where he cylindrical radial coordinate is r, and h is the jet height). We have for the time interval (t) taken by the circuit to expand (radially):

$$\tau = \int_{r_i}^{r_e} \frac{dr}{V_A(r,h)}$$ \hspace{1cm} (1)

here r i is of the order of the jet radius. We use the external density profiles inferred from γ-ray data to evaluate V A(r,h).

II. APPLICATIONS

The calculations are made for parameter values of several sources (as mentioned in his abstract). Here, because of the lack of space, we discuss briefly just the case of Cygnus A. [A fuller discussion will be published elsewhere (Jafelice and Opher 1989)].

It has been observed by Dreher et al. (1987) that the magnetic fields are around Cygnus A, which are observed on scales of 20–30 kpc, with intensities of 2–10 μG.

We assume regular previous active (i.e., jet-current generation) periods, \(\tau_{\text{act}} \approx 10^{0} \) and \(\tau_{\text{inact}} \approx 10^{2} \). Jet current generation has recently been discussed by Jafelice et al. (1989) (for a more detailed discussion see also Jafelice et al. 1990). We studied \(f = 1; 10^{-1} \) and \(10^{-2} \). The above mentioned observations are found to be best fitted with \(f = 10^{-1} \). We have \(r_e \approx 16 \) kpc and a mean azimuthal field \(B_\phi \approx 3 \) μG is obtained at this distance from the jet axis.

The calculated \(r_e \) and \(B_\phi \) are in good agreement with observations. The proposed process, moreover, can give rise to the unusual magnetic field geometries which seems to be needed to explain observed large-scale rotation measure gradients in the lobes of Cygnus A (Dreher et al. 1987).

Consider the case of a galaxy which has two consecutive active periods separated by \(1/4 \) of its rotation period (through an axis perpendicular to the plane defined by the two generations of jets) when the second active period begins, with the associated jet-current generation taking place. Assume further that the energetics and electric current alues are similar in the two active periods, and that the parent galaxy has not moved too much apart from one active period to the consecutive one which is not a stringent condition or galaxies sitting in the potential well of a cluster of galaxies. Such a scenario could account for the very special magnetic field geometry which is needed to explain some puzzling magnetic field features observed with some extragalactic radio sources and which are, up to now, impossible to explain.

The above described scenario can explain, for example: 1) the large scale rotation measure gradients observed in the lobes of Cyg A mentioned above, and also such gradients observed in the lobes of M84 (Laing and Bridle 1987); 2) the intergalactic magnetic field structure needed to explain the bends observed in the jets in 3C465, the calculations of which indicate that the magnetic force (J x B) is the probable cause for the bending (Eilek et al. 1984). The present model is able to explain not just the intergalactic magnetic field geometry to account for the bending, when opposite jets bend to the same side, but also order f magnitude estimates indicate that the model can explain this phenomenon quantitatively (Jafelice and Opher 1989). Similarly, the model can explain the slight bending, also to the same side, of both jets in M84 (Laing and Bridle 1987); 3) the correlation among several eatures observed to exist at two locations in the jet in NGC 6251 (Perley et al. 1984) namely: the diminishing rate of the jet lateral expansion; the existence of a strong transversal rotation measure gradient; the occurrence of knots; and the indication of a magnetoionic "sheath" (\(\nu \approx 2.5 \) kpc) about the jet. (These are the dimensions of a magnetic cocoon which we obtain)}
for this source following the procedure summarized in section II above, in particular, if the jet velocity is relativistic (which is still an open question, Perley 1989). Further detailed discussions of these and other applications of the present model are made in Jafelice and Opher (1989).

The authors would like to thank the Brazilian agencies CEPE/PUCSP and FAPESP (L.C.J. and CNPq (R.O.) for support.

REFERENCES