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RESUMEN. Considerando las hipétesis de Chandrasekhar
para el estudio de 1la Dindmica Galactica, se han
desarrollado varios modelos galActicos analiticos
integrables con simetria axial y dependientes del
tiempo.

ABSTRACT. By considering Chandrasekhar hypotheses for
the study of Galactic Dynamics, several integrable
analytic axisymmetric time-depending galactic models
have been developed.
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I. INTRODUCTION

Wide regions of the Galaxy can be studied as a dynamical system
whose distribution function f in phase space satisfies the collisionless
Boltzmann egquation

Df af . - . =

B v v Vrf V}U va-o (1.1)
where t is the time, r and V¥ are the position and the velocity of a star and U
is the potential per unit mass.

Chandrasekhar (1942) developed a theory of the Galactic Dynamics
based on three fundamental hypotheses:
1) At any point r of the system it is possible to define a local standard of
rest, whose.velocity is V,a(t,r).
2) The distribution function f is of the generalized Schwarzschild type

flt,r,V) = f(Q + o) (1.2)
where Q is a undratic form

Q=v -A-v
being

v=V-V,

the residual or peculiar velocity of a star, A(t,r) a symmetric second order
tensor and o(t,r) a scalar function.
3) The motions of stars are governed by the potential U(t,r) per unit mass.

The fundamental equation (1.1) admits a solution of the form (1.2)
when
D(Q + o) _
— o — ° 0 (1.3)
If

A=AV,

_ -x = Vbt-A-VB +o=A'Vy+ 0o
are introduced, (1.3) can be expressed (Ordis 1952) by the four tensor
equations
def A =0

1 - (1.4)
defA=—2-
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AU + g? = - Loy
Lo (1.5)
AV = = 5%

where def denotes a generalization of the strain operator of the ellasticity
theory (Oridas 1952).

I11. DERIVATION OF THE MODELS
If the éystem is assumed to be symmetric with respect to the

equatorial plane and to the rotation axis, by solving the equations (1.4) in
cylindrical coordinates (%,¢,2) it is obtained (Sala 1986)

1
= 2 = 2 2 = e :
Awa k; + h4z A¢¢ k1 + kza + h4z Aa 5 kl o]
A =0 A =0 A, = -8
B ¢= 0= "0
) 1
= - = 2 = —— :
Amz k4az Azz ks * k46 Az 2 kz 2

where k, and k5 are positive functions of the time t, Ry and k, are positive
constants and /3 is a negative constant provided that the azimuth angle ¢
increases with the rotation of the BGalaxy.

The solution of the equations (1.5) allows for the determination
of the potential ¥ and the function x. A general description of its derivation
can be found in Sala (1989), Three different types of solutions are found
depending on the relations between the functions k, and ki.

Case 1: kR, = ki, The solutions can be written in spherical
coordinates (r,¢,6). They _are
kj_ " h ’ 2 rz 1 r2 h
Us= [ - + 1 ] + — [ Ut — )+ ——é— U, (8) ]
4 8k, Ry Rk, Ry r 2.1
1 k2t r2 k
- =y = = + U — )+ [ ——%- + k4 ] U, () + constant

2 8 Ry Ry r
where U, and U, are arbitrary functions.

The first integrals of the system are
bl E
kitn—%';—:ix-m)2+k1§2+k1<z-,1-)'£11—z>2
2 -~
2
+ 2 U Ty —:Et— U,(8) = constant
r
I, = 88 = constant (2.2)
I = (=2l- %2 12+ 2%8% + 2U,(8) = constant
where (I1,&,2) are the physical cylindrical components of the velocity of a
star.

Iy

Case 2: Ry # kg, but k;*ky = R3*R,. The solutions can be written in
prolate spheroidal coordinates (A\,¢,») defined by

X .
v } = % { ~omp+B 2%t [(~a-p+Bot2)? - 4(ay-762—a22)]1/2}

where o = - ky/ky and ¥ = - ky/k,. They are
U= R "-Rg" (R, =Rsy’) A+ v
= | - +
7 B (R, -ky) Ry-Ry

. 1 [ F(N (Ry=kg)) = F(v/(Ry—ks)) ]
Py R-v) 7 (R -R3)
- ._1— x = R {_ kl,kS, + (hl,_hs,)z Av
2 b 8k,* 8 (Ry-kg)?
(V/ (Ry=Rg)) F(N/(Ry=Rg)) = (N/(Ry=Rs)) F(0/(Ry=ks))
X-0) 7 (R;-Rj)

(2.3)

+

} + constant
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where F is an arbitrary function.

The first integrals of the system are

I, Eki(ﬂ—%’f%a)2+h1§2+ ki(z—;—_%z)z
v 2k, O UsTh)) = POUSTRI) gt ant
I, = 5% = constant (2.4)
I = ( 2 - 82 )% + 22> —h%:-::— z - %'ih—::—:fz)z
- R LUk /R =0) FUN/ (Ry=Ry)) ~ Uk/R X U/ thymhs)))

‘ Case 3. R,’ky # k3" k,. The solutions have already been described
(Sala 1987).

The sets of first integrals (2.2) and (2.4) are in involution, so
that, the solutions found in the cases 1 and 2 determine integrable systems,
being the equations of motion solved as quadratures.

III. KINEMATICAL AND DYNAMICAL CONSEQUENCES.

In the cases 1 and 2, the physical cylindrical components of the
velocity of the local standard of rest are

=1 B
My = 7 R 3
8o = - ﬁmz 2
Rtk B R, 2
1 kg°
Z°=TTQ}_Z
< 3
while its motion is given by
B = c v
_ - 3 dt
- = I -

2 2
z=c “1”2% ”PA % v
=¥
where Cs? ¢B and c, are constants and w is a function of timg¢ t defined by
2
Ry = gy (3.1
2
ky = gy
where 2, and #3 are constants, being #, = #3 in the case 1.

If a new cylindrical coordinate system (c6,¢,cz) and a new  time

(Chandrasekhar, 1942)
dt
T = —_—

2 (3.2)

are introduced, the motion of the local standdrd of rest is reduced to the
circular differential rotation found in the steady state systems.

In the case 1, defining a new spherical coordinate system (cr,¢,6)

where
r=cy
being w given by (3.1), and with the new time < defined in (3.2), the

potential (2.1) can now be written as

- 2 1
U= Vi(cr ) + — V2(9) (3.3)

[
r

where V, and V, are arbitrary functions.
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In the case 2, defining a new prolate spheroidal system (cx,¢,cv

where

A= cxu?

v = cvvﬂ
and with the new time T, the potential (2.3) can now be expressed by

G(ck) - G(cv) .
U= (3.4)
c, - ¢
A v

where G is an arbitrary function.

The potentials (3.3) and (3.4) have the forms of those found in
the search of steady state solutions of the equations (1.5). The first
integrals in (2.2) and (2.4) are reduced, in the new coordinates, to the
energy, the angular momentum and the classical third integrals.

Being in the transformed coordinates the forms of the potentials
those of the steady state potentials, the classification of the orbits in the
transformed coordinates is that obtained by de Zeeuw (1985). Bound angular
momentum orbits are stable short axis tubes limited by coordinate surfaces or
derived special cases, being possible both direct and retrograde orbits.

IV. SUMMARY AND CONCLUSIONS

The most general non stationary solutions of the - Chandrasekhar
theory for rotating systems with an axis and a plane of symmetry have been
found. The solutions found in the cases 1 and 2 describe dynamical systems
with three degrees of freedom and three isolating integrals in involution, so
that they are integrable. Transformed space and time coordinates can be
introduced, so that the orbit structure can be accounted for.
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