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RESUMEN. La existencia de estrellas con masas en exceso de ~ 100 Mg ha sido
cuestionada por mucho tiempo. Limites superiores para la masa de ~ 100 Mg han
sido obtenidos de teorias de pulsacién y formacién estelar. En este trabajo nosotros
primero investigamos la estabilidad radial de estrellas masivas utilizando la aproximacién
clasica cuasiadiabatica de Ledoux, la aproximacién cuasiadiabatica de Castor y un calculo
completamente no-adiabatico. Hemos encontrado que los tres métodos de cilculo dan
resultados similares siempre y cuando una pequeia regién de las capas externas de la
estrella sca despreciada para la aproximacién cldsica. La masa critica para estabilidad
de estrellas masivas ha sido encontrada en acuerdo a trabajos anteriores. Explicamos la
discrepancia entre este y trabajos anteriores por uno de los autores. Discutimos cilculos
no-lineales y pérdida de masa con respecto al limite superior de masa.

ABSTRACT. The existence of stars with masses in excess of ~ 100 Mg has been questioned
for a very long time. Upper mass limits of ~ 100 Mg have been obtained from pulsation
and star formation theories. In this work we first investigate the radial stability of massive
stars using the classical Ledoux’s quasiadiabatic approximation, the Castor quasiadiabatic
approximation and a fully nonadiabatic calculation. We have found that the three
methods of calculation give similar results provided that a small region in the outer layers
of the star be neglected for the classical approximation. The critical mass for stability of
massive stars is found to be in agreement with previous work. We explain the reason
for the discrepancy between this and previous work by one of the authors. We discuss
non-linear calculations and mass loss with regard to the upper mass limit.

Key words: STARS-MASS FUNCTION - STARS-MASS LOSS — STARS-PULSATION

In recent years growing attention has been paid to the potentially important role played by very massive
1> 100 M) stars in various areas of astrophysics. The potential importance of very massive stars remains in contrast
the fact that the feasibility of these stars both from the point of view of their formation as of their stability against
sruptive processes still faces many uncertainties. The theoretical results for the upper mass limit of star formation
ffer widely from 60 Mg to several 100 Mg.

The existence of stars with masses in excess of ~ 100 Mg has been questioned on grounds of their
alsational instability alone (Ledoux 1941 and Schwarzschild and Harm 1959). According to these results, in such
ars the nuclear energizing of pulsations in the stellar core - the e-mechanism - overcomes the damping effect of the
welope. The resulting pulsations are believed to eventually disrupt the stars or cause strong mass loss which reduces
teir lifetimes effectively. In order to investigate this possibility, direct nonlinear calculations have been performed by
'veral workers. Osaki (1966) suggested that the amplitude of oscillation could be limited by mass loss if the gain of
echanical energy of pulsation is all lost in the form of mass ejection from the surface. He estimated that the time scale
ser which most of the star’s mass is lost is comparable to the Helmholtz - Kelvin time scale. The main criticism to his
ork is that he assumes that mass loss is the only dissipation mechanism.
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Papaloizou (1973a,b) has studied non-linear pulsations of 70-170 Mg stars. He found that resonances
cause systematic modulation of the velocity curve and showed that the oscillation amplitude is probably limited to
fairly low values. The hydrodynamical calculation of Ziebarth (1970) showed that stars above the stability limit could
reach a limiting amplitude before mass loss occurs (see, however Appenzeller 1970a,b). On the background of these
investigations the existence of high-mass stars beyond 100 Mg has been reconciled with their being unstable linearly
and in some cases nonlinearly by referring to the limiting effect of the outer layers which might permit finite lifetimes
depending on the presence and intensity of mass-loss associated with the oscillations. The significance of the existing
nonlinear results for the fate of VMS remains, however, uncertain. In particular, it is not clear that the linear instability
of VMS implies that these stars cannot exist. The non-linear calculations we have described suggests that non-linear
effects can limit the linear instabilities.

In a previous work by one of the authors (Klapp, Langer and Fricke 1988, hereafier referred to as Paper
I) we obtained that the fundamental mode becomes unstable at a mass greater than the accepted value of ~ 100 Mg .
The results obtained for the overtones were similar to those reported by other authors. In this work we reinvestigate
the linear radial stability of massive stars using the three most common methods of calculation, which are the classical
Ledoux’s quasiadiabatic approximation, the Castor quasiadiabatic approximation and a fully nonadiabatic calculation.
Part of the motivation for this work is to understand the discrepancy between our previous result and those obtained
by other authors. ~

For the linear stability analysis we have used a modified version of the Los Alamos Linear Nonadiabatic
code (Pesnell 1983). In Castor’s (1971) notation we can write the linearized momentum and energy equations as

wiX = G1 X + Gy, (1)
wY = K1 X + KyY, (2)

where X = (X;,i = 2,N + 1), Y = (Y;,5 = 1, N), N is the number of zones in the star and the X; and ¥; are defined by

X; = (DM2))Y/%r;, Y; = T;5S;, 6r; and §S; are the radius and entropy perturbations and DM2; is the mass of zone i.
From Castor 1971 the quasiadiabatic eigenfrequency w is given by

2_ 2 Jo (6rf Ga(iwol — K3) "' Kybri)dm
—wd=

f:f'(h;)zdm

where wo and ér; are the adiabatic eigenfrequency and radial eigenvector, I is the identity matrix and T denotes the
transpose operation. We shall call this the Castor quasiadiabatic approximation (CQAD approximation).

w

, @)

Ledoux’s (1941) quasiadiabatic approximation (LQAD approximation) for the imaginary part of the
eigenfrequency is calculated using the well-known expression

I o= o 4
wl fo *(6rs)%2dm

The fully nonadiabatic calculation (NAD) is obtained by solving equations (1) and (2) (see Castor 1971
for details of the method).

For our computations, the equilibrium models were constructed in two different ways. The first with the
Gottingen stellar evolution code (Langer, El Eid and Fricke 1985) and the second by an inward only integration for a
given set of surface parameters (mass, effective temperature, luminosity and composition), which is the usual method
of construction of the equilibrium model in the Los Alamos code. In a forthcoming communication we shall describe
the advantages and disadvantages of each method in relation to the linear stability problem.

In Table 1 we show the physical parameters for the stellar models using the Gottingen stellar evolution
code. The physical parameters for the second method are very similar to the ones shown in the table.

The linear stability results that we now describe have been obtained with the second set of models (for
a complete description of the results see Klapp and Corona-Galindo 1990a). In general, we have found reasonable
agreement -between the three methods of calculation provided that the contribution from the outermost nonadiabatic
layers be neglected for the LQAD approximation. The LQAD values depend somewhat on the cutoff assumption
introduced in the evaluation of the damping integral (eq. (4)). Authors differ widely on the cutoff assumption: Ledoux’s
(1941) citoff is at a temperature T = 6T,;,. Stothers and Simon (1970) neglected the nonadiabatic layers entirely for
the hydrogen-burning models. Maeder (1985), for hydrogen-burning models, and Noels and Masereel (1982), for
helium-burning models, introduced the cutoff at a point where the nonadiabatic terms are 10% of the adiabatic ones.
For the evaluation of our LQAD values we have adopted an approach similar to that of Maeder (1985) and Noels and
Masereel (1982).
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TABLE 1°. Physical Parameters for the Stellar Models.

M(Mo)  Logo5  LogTyy 45 Log pe Log T. Gec
130 6.298 4.747 15.63 0.165  7.644 0.862
208 6.610 4761 20.26 0.040  7.651 0.911
300 6.828 4772 24.81 0034  7.661 0.935
400 6.991 4778 29.07 —0.091  7.668 0.952
500 7.113 4782 32.86 —0.135  7.673 0.962
750 7.327 4787 41.02 0213  7.681 0.974
1000 7.473 4790 47.80 0267 7687 0.979
2000 7.813 4.796 68.95 -0.391  7.700 0.989
5000 8.244 4.801 110.45 -0.564 7716 0.903

a. For all models the composition is (X,Z) = (0.687,0.043); qcc is thie mass fraction of the convective core,
and the index c designates central quantities. The remaining symbols have their usual meaning.

In Table 2 we show the periods and e-folding times for the first three modes. All numbers corréspond
to the nonadiabatic values. The differences between the LQAD approximation and the nonadiabatic values are
aiways less than 10% and in some cases even less than 5%. The differences between the CQAD approximation and
the nonadiabatic values are always less than 1%. The CQAD approximation is so good that unless we require the
nonadiabatic eigenvectors there is no real need for calculating the fully nonadiabatic eigenvalues. The real advantage
of the CQAD approximation is that there is no need for introducing cutoff assumptions.

The values obtained for the imaginary part of the eigenfrequency of the fundamental mode are similar
to those obtained by other authors. The fundamental mode becomes unstable at about 100 Mg . The somewhat larger
value obtained for the critical mass in paper I was due to slight differences between the stellar structure code and
the pulsation code which produced enhanced damping of the outer layers (or too little driving from the stellar core)
pushing up the critical mass to a few hundred solar masses (see Klapp and Corona-Galindo 1990z for details). This
suggest that although the fundamental mode becomes unstable at about 100 Mg, it’s instability is rather marginal.
Effects such as running waves at the surface that may destroy the perfect reflection condition could have some effect
on the stability of these stars.

Despite the fact that stars are linearly unstable for masses that are high enough, more work is required
to settle the question of whether pulsation reaches a limiting amplitude or if the star is completely disrupted.

It has been suggested by several authors that the non-existence of stars with masses >>100 Mg could
be the effect of mass loss. The mass loss mechanism in early type stars is not completely understood which makes it
neccesary to rely on observations. Although there has been a great number of observations,the mass loss rate has been
accurately estimated only for stars with high mass loss rates. By analysing the infrared excess of 34 OBA supergiants
and 10 Of and Oe stars, Barlow and Cohen (1977) have found that the mass loss rate is related to the luminosity by the
equation

M = alLb, ®)

TABLE 2°. Periods Py, Py, P; and e-folding Times rp, 11, 72, for the Fundamental Mode, First
and Second Overtones, Respectively.

M(Mp) Py P, Py i—;‘}g i%‘ -1103;
130 0.393 0.178 0.132 -5.6 0.965 4.43
208 0.504 0.211 0.156 -3.2 1.034 4.33
300 0.611 0.241 0.178 -2.3 1.053 4.01
400 0.710 0.268 0.197 -2.1 1.122 3.88
500 0.797 0.289 0.213 -1.9 1.145 3.88
750 0.985 0.334 0.246 -1.8 1.161 3.71

1000 1.165 0.381 0.276 -14 1.236 2.74
2000 1.760 0.490 0.350 -1.2 1.355 2.69
5000 4.189 0.698 0.486 -0.6 1.519 2.37

a. Periods are in days and e-folding times in seconds for all modes.
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where a = 5 x 10! Mg yr=1, b = 1.1+ 0.06 or 1.2 + 0.08 for O stars and B-A supergiants, respectively. L is given in
solar luminosities. In Klapp (1982, 1983, 1984) we computed evolutionary sequences for population 111 VMS with the
Barlow and Cohen (1977) empirical law that can be written in the form

mM=nL (6)

62 !
where N is a constant in the range (50-500).

In Table 3 we show the age and fraction of total mass lost toward the end of the main sequence and
toward the end of the helium burning phase. The fraction of mass lost depends mainly on N and only increases slightly
in the very high mass range. For high enough N (> 300) the mass is reduced considerable, in some cases even below
~ 100 Mg . However, values of N near ~ 100 are more consistent with observations. In this case stars stay in the VMS
range even though large amounts of mass are lost. The results obtained for population I and II compositions are very
similar with regard to mass loss (Klapp and Corona-Galindo 19905). The reason for this is that our mass loss algorithm
depends only on the luminosity and this is rather insensitive upon composition.

Thus, these calculations suggest that mass loss is effective in reducing the mass of the star but unable to
inhibit the passage of VMS through the hydrogen and helium burning phases.

TABLE 3% Age and Fracation of Total Mass Lost toward the End of the Main Sequence
(M5, (AM/M;YM5, Respectively), and Toward the End of the Helium Burning Phase
(r&Te, (AM/M;)He, Respectively).

MS He
M(Mg) N MS (52)" & (585)7 MyMo)
500 100 2.33 0.37 2.59 0.41 295
500 300 2.52 0.74 2.90 0.79 105
500 500 2.57 0.89 2.77 0.90 50
1000 100 2.24 0.36 2.48 - 0.42 580
1000 300 2.27 0.75 2.56 0.80 200
1000 500 2.52 0.92 8.07 0.94 60
10000 100 1.87 0.43 2.12 0.48 5200
10000 300 2.04 0.83 2.27 0.87 1300
10000 500 2.28 0.95 2.36 0.97 300

a. My is the mass at the end of the helium burning phase. 7g denotes time in units of 108 yr.
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