THE BEHAVIOUR OF CaII LINES OF GIANTS AND SUPERGIANTS IN THE LIGHT OF STELLAR WINDS

Sandra A. Gonçalves and Eduardo J. Pacheco
Instituto Astronômico e Geofísico,
Universidade de São Paulo, Brazil

RESUMO. Foram obtidos no Laboratório Nacional de Astrofísica (LNA) espectros fotográficos das linhas de ressonância H e K do CaII, de trinta e cinco gigantes e supergigantes de tipos K - M.

A intensidade de linha K do CaII varia com a temperatura de forma semelhante às linhas da região de transição e da emissão de raios-X da coroa, indicando que o aquecimento magnético exerce uma certa influência no aquecimento das camadas externas de estrelas de tipos tardios.

ABSTRACT. Coúdegla IIAO plates of thirty-five southern K-M giants and supergiants were obtained in the H and K lines of CaII using the 1.6 m telescope of the Laboratório Nacional de Astrofísica (LNA, Brazil). CaII K line intensity varies with temperature in a similar way as do transition region lines and coronal X-ray emission. This indicates that magnetic heating plays a certain role in the heating of the outer layers of late-type stars.

Key words: STARS-GIANT — STARS-SPECTRUM VARIABILITY — STARS-SUPERGIANT STARS-WINDS

INTRODUCTION

Analysis of data obtained by the Einstein (soft X-ray) and International Ultraviolet Explorer (λλ1150-3200) satellites, indicated that the late-type stars could be separated in the HR diagram, by a nearly vertical boundary line at (V-R)~ 0.80, dividing these stars into two groups according to their atmospheric structure. The dwarfs, giants and some supergiants of class G, which have an atmosphere composed by chromospheres (6 x 10^3 - 2 x 10^5 K) - transition regions (2 x 10^5 - 2 x 10^6 K) - coronae (~ 10^6 K), are found in the left half; giants later than K2III and supergiants later than C5Ih, which would have an outer atmosphere that extends chromospheres and no evidence of regions with temperature higher than 10^6 K in the other half (Linsky and Haisch, 1979; Ayres et al., 1981).

Later on, ultraviolet spectra of β Aqr (G2Ib), α Aqr (GOIb) and β TrA(K4II-III) showed evidences of a third group - the hybrid stars, whose atmospheres present characteristics of the other groups: ultraviolet lines formed in the transition region (but without soft X-ray detection) and circumstellar absorption lines indicative of massive, cool winds (Hartmann et al. 1980).

The existence of the hybrid stars shows that dividing lines in the HR diagram are not so sharp, and may have a certain width.

The mechanism responsible for the existence of the boundary lines in the HR diagram of yet well known, but the strength and geometry of the magnetic field may play an important role in the changing atmospheric structure of the stars across the HR diagram (Viana and Osner, 1978). As the resonance lines H and K of CaII are spatially correlated with the magnetic field in the solar surface (Skumanich et al., 1975), we used the CaII K line as a atmospheric structure tracer to study the behaviour of this line, and consequently of the magnetic energy, for stars near the coronal and transition boundary lines.
RESULTS AND DISCUSSION

We obtained spectra for K-M giants and supergiants using IIa0 plates in the coudé spectrograph of the 1.60 m telescope at Laboratório Nacional de Astrofísica (LNA - Brasipolis/ MG). The data were reduced using a PDS microdensitometer at Observatório Nacional (RJ - Brazil) and the Nice Observatory (France) data treatment programs at Centro de Computação Eletrônica da Universidade de São Paulo (CCE-USP).

To transform the chromospheric K emission equivalent widths (EW(K)) into flux units, we used the expression:

\[\frac{F_K}{F_*} = \frac{B(T_{\text{ef}})}{\sigma T_{\text{ef}}^4} \frac{\text{EW(K)}}{\text{EW(K)}} \]

where \(B(T_{\text{ef}})\) is the Planck function, and \(F_K, F_*\) are K emission and bolometric fluxes.

The results are plotted in figure 1, where two trends can be observed:

1. The K emission flux decreases slowly with temperature for the supergiant stars. The same behaviour was also verified by Linsky et al. (1979).

2. For the giants, the K emission flux decreases sharply for stellar types \(\sim\) K0-K1 (0.80 \(<\) (V-R) < 1.00); but for stars with (V-R) > 1.00 no definite tendency could be evidenced from our data.

![Figure 1](image_url)

Figure 1 - CaII K emission flux (in units of the bolometric flux) in function of the (V-R) color index.

Consequently, we can say that the net magnetic energy in the stellar surface also decreases with \(T_{\text{ef}}\) for supergiants and giants with 0.80 > (V-R) > 1.00. On the other hand, for giants later than \(\sim\) K4-K5 the magnetic energy trend is not clear. It suggests two interpretations: a) The magnetic energy plays an important role in the heating of the outer atmosphere (chromosphere - transition region - corona). This would probably imply some kind of process leading to a sharp decrease in the observed \(F_K\) for stellar types KOIII-KIIII; and for giants with (V-R) > 1.00 we may have a magnetic field regenerating process so that the magnetic energy would probably be used to accelerate a stellar wind rather than to heat the outer atmosphere. Figure 2 shows the ratio between blue (V) and red (R) K emission intensity peaks for some stars in our sample. It can be seen that the transition from V/R > 1 to V/R < 1 occurs about (V-R) \(\sim\) 1.00, indicating also the set up of cool winds in the stellar atmospheres (Stencel, R.E. 1978; Stencel, R.E. and Mullan, D.J. 1980). However, up to now there are no enough data to assess an explanation about these process; or b) The magnetic energy do not play an important role in atmospheric heating when compared to other types of released stellar energy; however, all intensities decrease with \(T\).
Figure 2 - CaII V/R ratio for some stars of the sample.

The authors would like to thank the Brazilian agencies CNPq, and FAPESP for support.

REFERENCES

Sandra A. Gonçalves and Eduardo Janot Pacheco: Instituto Astronômico e Geofísico, Universidade de São Paulo, Caixa Postal 30627, CEP 01051, São Paulo, SP, Brazil.

© Universidad Nacional Autónoma de México • Provided by the NASA Astrophysics Data System