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RESUMEN. Se revisan resultados analiticos relativos a soluciones regulares del pro-
blema asteroidal eliptico promediados en la vecindad de una resonancia con Jipiter.
Mencionamos la ley de estructura para libradores de alta excentricidad, la estabilidad
de los centros de liberacién, las perturbaciones forzadas por la excentricidad de Jupiter y
las 6rbitas de corotacién.

ABSTRACT. This paper reviews analytical results concerning the regular solutions of the
elliptic asteroidal problem averaged in the neighbourhood of a resonance with Jupiter.
We mention the law of structure for high-eccentricity librators, the stability of the libration
centers, the perturbations forced by the eccentricity of Jupiter and the corotation orbits.
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. INTRODUCTION. MEAN-MOTION AND SECULAR RESONANCES

The study of collective phenomena in the Dynamics of the Solar System gained momentum in the past
ecade with the increased possibility of utilization of fast computers and new techniques of propagation of orbits, as
sell as, in the particular case of planetary rings, with the availability of precise space and ground-based observations.
mportant advances were recorded concerning the dynamics of the asteroidal belt, planetary rings, meteor swarms, the
Jort cloud and the planetesimals embedded in the pre-planetary nebula.

The interest in the asteroidal belt is due not only to its cosmogonical importance but also to the fact that
ndividual asteroids may be seen as probes moving in the phase space of a well-defined dynamical system, providing
vidence for new dynamical phenomena. Among the asteroids, the role played by resonances with Jupiter was unravelled
y the first studies on the distribution of their orbits, when less than one hundred asteroids were known. The asteroids
f the main belt avoid moving in resonance with Jupiter, leading to well-marked gaps in their distribution at periods
/2,2/5,3/7 and 1/3 of the period of Jupiter. On the other hand, almost all asteroids found moving outside the main
ielt move in resonance with Jupiter. They are the Hildas and (279) Thule, whose periods are respectively 2/3 and 3/4
f the period of Jupiter, and the Trojans, whose orbits are oscillations about Jupiter’s Lagrangian points L4 and Ls,
hus having, in the average, the same orbital period as Jupiter. All these features are easily visible in Figure 1.

The gaps in the main belt are called Kirkwood gaps and are usually identified by the rate of the corre-
ponding orbital mean motion to that of Jupiter 2/1, 5/2, 7/3 and 3/1 (instead of the ratio of the periods). In the same
7ay, the resonances where lie the Hildas and (279) Thule are known as 3/2 and 4/3. The Hildas, (279) Thule and the
lrojans are not the only asteroids known as moving in resonance with Jupiter. In fact, there are also a few asteroids
noving in resonance with Jupiter inside the Kirkwood gaps. They are the Alindas, in the gap 3/1, and the Griguas, in
he gap 2/1. These asteroids present the kinematical behaviour known as libration. A librating asteroid in the resonance
p+ q)/p is an asteroid whose motion is such that the angle

0=(P+ 9 jup — P —qw (1)
scillates about a constant value (A and Ajyp are the mean longitudes of the asteroid and Jupiter, respectively, and @ is
he longitude of the perihelion of the asteroid’s orbit).

We may also mention some asteroids moving just outside the gap 2/1 — which we could call Sibyllas,
sllowing the widely used rule of giving to a group the name of its first member known — for which the angle 8 librates
bout w. While these asteroids present the same kinematical characteristic of the resonant asteroids mentioned before,
heir location in the phase space is such that many authors do not include them among the resonant asteroids (see for
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instance Poincaré, 1902). In fact their orbits may be obtained as analytic continuation of orbits in which the angle 6
circulates, thus, without crossing any true bifurcation. These asteroids are also known as apocentric or small-eccentricity
librators, as their eccentricities are always very small (less than 0.1), in contrast with the librators mentioned before
whose eccentricities reach values as high as 0.6.

Other asteroids are mentioned, sometimes, as linked to one of the other resonances associated with Kirk-
wood gaps, but the librating character of their orbits were not confirmed in a definitive way.

Just for sake of completeness we also mention that, in the past, the names of the asteroids (108) Hecuba
and (46) Hestia were associated to the resonances 2/1 and 3/1 respectively. However, the actual orbit of these two
asteroids lie on the left of the corresponding gaps and are such that the angle 6 circulates.

The resonances just considered are known as mean-motion resonances. They are not the only kind of
resonance to affect the motion of the asteroids. There are also the secular resonances which occur when the rate of
the motion of the longitude of the perihelion, or that of the ascending node, of the asteroid’s orbit equals one of the
eigenfrequencies of the linear theory of the secular motion of the planets. Given the location of the asteroidal belt three
1/1 secular resonances are important, two of them involving the asteroid perihelion and the eigenfrequencies vs and vg
associated with the motion of the perihelion of Jupiter and Saturn, respectively. The other involves the node of the
asteroid’s orbit and the eigenfrequency v4¢ associated with the joint motion of the nodes of the orbits of Jupiter and
Saturn over the invariable plane of the Solar System. The secular resonances also provoke gaps in the distribution of the
asteroids. However, as the motion of the perihelion and node of the asteroids is strongly dependent on the eccentricity
and inclination of the orbit, these gaps are apparent only in tridimensional distributions (Williams and Faulkner, 1981).
Figure 2 shows the distribution of the mean motions and inclinations of the asteroids with eccentricities less than 0.3.
The locations of the secular resonances v5,v5 and v¢ are indicated by dashed lines, and the role played by them in the
distribution is evident.

The numerical integration of the equations of the motion of fictitious resonant asteroids, in all these
resonances, has shown the existence of motions called ergodic, stochastic or, more recently, chaotic (see for example
Giffen, 1973; Froeschlé and Scholl, 1976, 1981 and Wisdom, 1987). However, the numerical integration of orbits of actual
asteroids in resonant motions shows that most of them are moving in regions where the solutions of the elliptic asteroidal
problem, averaged over the periods of the order of the synodic period of the asteroid and Jupiter or, in the case of the
Trojans, of the order of the sidereal period of these bodies, are regular. at least for times of the order of the integration
intervals (less than 106 years).

The regular motions of the asteroids in mean-motion resonance with Jupiter, the Trojans excepted, are
reviewed in the next sections.

I1. HIGH-ECCENTRICITY LIBRATIONS

The regular motions of the asteroids in the resonances 3/1, 2/1, 3/2 and 4/3 are oscillations about stable
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Figure 1. Distribution of the mean motions and eccen- Figure 2. Distribution of the mean motions and incli-
tricities of the asteroids, showing the gaps at the mean nations of the asteroids with e < 0.3 and the positions
motions 3/1,5/2,7/3,2/1 and the groups at the mean corresponding to the secular resonances v, vg and vig
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periodic solutions of the averaged asteroidal problem known as libration centers (see Fig. 10). The libration centers
have, generally, high-eccentricity (up to 0.6 in some cases) and the construction of analytical models for studying the
oscillations around them, the so-called librations, is impaired by the poor convergence of the classical series of Celestial
Mechanics. The only successful existing models for the study of the properties of these motions are due to Ferraz-Mello
(1988) and Morbidelli and Giorgilli (1989). In both cases the classical expansions were discarded and canonical models
were constructed using the expansion of the potential of the disturbing forces in Taylor series about the libration centers,
averaged over the synodic longitude. The expansion used by Morbidelli and Giorgilli is fully numerical while that used
by Ferraz-Mello is semi-analytical, the coefficients being obtained by numerical quadrature of functions whose analytical
expressions are given. If the adopted angle variables are

o=t P w
q
gy = m/\ju}, - 2/\ - wju,, (2)
q q
0= A diw,

q

Ferraz-Mello planar expansions for the potential of the forces disturbing the motion of an asteroid in the resonance
(p+ ¢)/p have the form

R = Ro+ Ry(k — ko) + Ra(h — he) + Ra(k — ke)? + Ra(k — ke)(h — he) + Rs(h — he)?

+{Rs + R7(k — kc) + Rs(h — he)} €jup cos o1 + {Ro + Rio(k — Kc) + Ria(h — he)} €jup sinoy
+ {R12 + R13 cos20y + Ry4sin20,} efup + e 3)
(see Ferraz-Mello, 1987b, 1989a; Ferraz-Mello and Sato, 1990) where the variables k and h are defined by

k4 1th = e.exp1o. 4)

e and ej,, are the orbital eccentricities of the asteroid and Jupiter. The coefficients R; are functions of the semi-major
axes @,@jyp and of the parameters k., h., values of k, h at the chosen libration center. The averaging of the coefficients
R; over @ is obtained by using elementary procedures of numerical quadrature (not to be confused with the numerical
integration of the differential equations). It is worthwhile noting that all calculations for obtaining these coefficients and
their averages are done without using any expansion in power of the eccentricities and are valid for all eccentricities.

We note that the averaging used by Morbidelli and Giorgilli is a true averaging of the differential equations,
founded on a Lie-series perturbations theory (see Ferraz-Mello, 1989b) performed up to the square of the disturbing
masses, while Ferraz-Mello averaged the right-hand side of the equations only (scissors’ averaging), which corresponds to
the exact averaging at an order less than the square of the disturbing mass of Jupiter (we recall that this order depends
on the particular problem studied since, generally, fractional orders are introduced when studying resonances).

When ejyp = 0 the averaged equations of the motion have periodic solutions. The locus of these solutions
in the plane (@,€) (the overlines indicate averaging over Q) was called law of structure in Ferraz-Mello (1988) and its
analytical expression, valid for any eccentricity, was given. This law was, later on, compared to the results arising from
the numerical integration of the equations of the planar motion of an asteroid (non-averaged) showing full agreement
(Vienne, 1987, fig.12).

The law of structure is shown in Figures 3-6 for the resonances 2/1, 3/2 and 3/1. We note that, in the
first-order resonances 2/1 and 3/2, the law of structure has two branches. The main branch corresponds to solutions for
which 0 = 0 and is called pericentric since it corresponds to solutions for which the asteroid is at the pericenter of its
orbit at the moments of conjunction with Jupiter. The other branch, said apocentric for a similar reason, corresponds to
solutions for which o = 7. Figures 3-6 show only the sections of these branches corresponding to orbits stable with respect
to planar displacements. The recent work of Morbidelli and Giorgilli consider the full spatial motion of the asteroids
and the stability of these solutions was studied also with respect to displacements perpendicular to the plane of the
motion. They introduced a parameter a, roughly equal to H,/maz(H, — H,) where H,(R,w) is the main contribution
of the space action-angle variables R,w to the averaged Hamiltonian and the overline indicates averaging over the angle
w. If @ > 1 the curves H, = const., in the plane of the polar coordinates R,w, are closed and the origin represents a
stable solution. However, in order to warrant stability over long periods of time this ratio must be large enough since,
otherwise, the non-considered terms cannot be considered as a small relative perturbations, and it is likely that a rigorous
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Figure 5. Law of Structure for the resonance 2/1.
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teroids close to the gap. The librators are shown
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tions, in several occasions, since their discovery.
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Figure 6. Law of Structure for the resonance 3/1.
The dots represent the osculating elements of aster-
oids close to the gap. The librators are shown by cir-
cles. The crosses and large dots indicate the elements
of the librators as determined from the observations,
in several occasions, since their discovery.

analysis would reveal that diffusion may happen in short times. Thus, if @ is not large enough, say o < 10, Morbidelli
and Giorgilli expect the solutions to be practically unstable over the long scale of the problem under consideration. The
values of a computed by them, for the resonances 2/1, 3/2 (pericentric branches) and 3/1, are shown in Figure 7.

Figures 3-6 also show the actual osculating elements of some asteroids. In Figure 3 the dots represent
the osculating elements a and e of all asteroids, in the range 0.74 < a/ @jup < 0.795, numbered before November, 1985,
according to the Efemeridy Malikh Planet for 1987. They are almost equally distributed on both sides of the pericentric
branch. Their actual values oscillate around one center on the pericentric branch. In the 250-270 years of a libration, the
eccentricity and the semi-major axis of a librating asteroid undergo a complete oscillation about the values corresponding
to a libration center. This scenario does not exclude the presence of asteroids in the structural gap 0.763-0.773 ajup
(3.970-4.019 A.U.) where no stable solution exists. It just prevents them from remaining stationary there. This structural
gap may be crossed and, indeed, at any time, some 15 to 20 asteroids of the quoted list may be found in the gap, those
of greater libration amplitude being able to cross the whole gap before returning; this is the case of the asteroids (1269)
Rollandia, (1529) Oterma and (1748) Mauderli, which, according to Nakai and Kinoshita (1986), may reach 4.05, 4.03
and 4.03 A.U., respectively. We note that no asteroid is known in the region corresponding to the apocentric branch of
the resonance 3/2.
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Figure 7. Stability ratio . The motion is unstable for displacements orthogonal to the orbital
plane for @ < 1. Stability over long spans of time is only granted if @ >> 1. (Morbidelli and
Giorgilli, 1989). From top:(a) Resonance 3/2; (b) Resonance 2/1); (c) Resonance 3/1.

In Figure 4, we show the actual variation of the orbital elements of 5 Hildas (out of 45 included in the 1989
ephemerides): (190) Ismene, (499) Venusia, (1269) Rollandia, (1439) Vogtia and ( 1529) Oterma, according to the data
published yearly, from 1881 to 1918, in the Berliner Astronomisches Jahrbuch, from 1912 to 1945, in the Bahnelemente
und Oppositionsephemeriden der Kleinen Planeten and, from 1945 to 1989, in the Efemeridy Malikh Planet. All points
represent orbits actually determined from the observations (orbits obtained just by numerical or analytical propagation
were discarded). This figure provides an observational confirmation of the results of the theory of. high-eccentricity
librators, showing that the orbital semi-major axis of these librators may have large variations (see Ferraz-Mello, 1988,
figure 8). These variations, up to 3 percent, show the impossibility of considering a constant semi-major axis during a
whole libration, as an approximation, as done in past theories.

In Figure 5, the osculating elements of the asteroids in the range 0.61 < a/aj,p < 0.654 are represented.
Most of them, shown by dots, are not oscillating about a libration center and their perihelions circulate with respect to
the lines of conjunction with Jupiter (that is, the angle o circulates); their semi-major axes are almost constant. The
ircles on the left side are the Griguas: (1362) Griqua, (1921) Pala, (1922) Zulu and (3789) Zhongguo (ex-1928 UF).
The circles on the right side are the apocentric librators, from left to right, (529) Rezia, (401) Ottilia, (1177) Gonnessia,
:1266) Tone and (168) Sibylla. The apocentric branch is drawn on the negative half-plane since it corresponds to o = 7
‘the vertical axis representing, in fact, e.coso, instead of the eccentricity). For the dots, the locations on the positive
r negative half-plane is meaningless since their corresponding o circulate. As for the Hildas, the Griquas have large
/ariations in their semi-major axes and the crosses indicate the elements of (1362) Griqua, (1921) Pala, (1922) Zulu and
3789) Zhongguo, as determined from the observations since their discoveries. The identification of these data in the

figure may be easily done by recalling that the eccentricity of high-eccentricity librators have only slight variations in
one libration period.
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Figure 6 show the actual osculating elements of the asteroids whose semi-major axis is in the range
0.47 < a/ajup < 0.49. Most of them, represented by dots, have relatively small eccentricity and are not oscillating about a
libration center (the corresponding angles o circulate). The circles indicate the Alindas: (887) Alinda, (1915) Quetzalcoatl
and (2608) Seneca. In this case, the law of structure has only one stable branch, corresponding to o = 7/2(mod 7),
shown in the figure. Crosses and large dots indicate the elements of these asteroids as determined from the observations.
It is worthwhile to mention the observed evolution of the orbital elements of (887) Alinda from one side of the resonance
to the other, since its discovery in 1918 (large dots).

II1. THE ROLE OF THE ECCENTRICITY OF JUPITER

When the orbit of Jupiter is considered circular, the main features of a librating asteroidal orbit are a free
oscillation about a periodic orbit (the libration center) with a period of a few centuries (roughly 250 to 450 years) and
short period fluctuations.

The consideration of the non-zero eccentricity of Jupiter introduces, in the motion of high-eccentricity
librators, an additional long-period oscillation associated with the motion of the line of conjunctions about the perihelion
of Jupiter’s orbit. The period of this oscillation is generally in the range 1,000-10,000 years (see, for instance, Nakai
and Kinoshita, 1986). In the apocentric, or small-eccentricity librators, this period is smaller and close to the libration
period, giving rise to very-long-period beats.

This modelling is a direct consequence of the use of Sessin’s transformation, a transformation allowing
the abridged equations of the averaged elliptic asteroidal problem to be reduced to that of the circular one (see Ferraz-
Mello, 1987a). Geometrically, this composition of motions is shown in Figure 8, in two different reference frames. In the
reference frame giving z = e.exp10 (fig. 8a), we have

2z =k, + Aexpia + Bej,pexpioy (5)

where k. is the eccentricity of the libration center (assumed in this figure as a pericentric one, i.e., such that o = 0),
A and_ o are the amplitude and phase of the libration (A is not a constant but an even 2r-periodic function of &) and
Bej,p the amplitude of the term forced by the ellipticity of Jupiter’s orbit.

To change to the more usual reference frame giving ¢ = e.exp (@ — w;yy,), we note that { = z*exp o,
g jup
(2* is the complex conjugate of z) and obtain

¢ = Bejup + kcexpior + Aexpi(or — a) (6)
(see fig. 8D).

An example of this composition, in the reference frame of z, is given in figure 9 which shows a planar
averaged modelling of the libration of (279) Thule under the action of Jupiter (Tsuchida, 1990). It is composed of a
banana-shaped free oscillation about the center k. =~ 0.07, with period 190 years, and a circular component forced by
the ellipticity of Jupiter with an amplitude of the order of k. and a period of 450 years. Figure 10 shows the complete
solution during almost the same time as in Figure 9. The differences between the modelled and actual motions are mainly
due to the averaging, since the closeness of the orbits of (279) Thule and Jupiter gives rise to very large short-period
oscillations (see Tsuchida, 1990, fig.6).

M e.sin o e.sin @

Ko N e.cos 0 Be, e.cos @

PLANO =z PLANO T

Figure 8. Composition of the main oscillations due to resonance in two different reference frames:
(a) z = e.exp1a; (b) { = e.exps(w — Wjyp); N.B. kg = k., €, = €jup:
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(Tsuchida, 1990) during 2200 years. (k,h).

Figure 11 shows the value of the forced amplitude Bejy, given in the theory of high-eccentricity librations
:rraz- Mello, 1988) and, for sake of comparison, those obtained by Schubart (1968) through a numerical averaging and
egration of the equations of the motion. We point out that the law giving this second forced mode, due to the ellipticity
Jupiter’s orbit, in the theory of high-eccentricity librations, is diferent from the similar one derived by Greenberg and
anklin (1975) in the study of 2:1 apocentric librations. However, a higher-order theory allows the conciliation of both
wlts, our result being valid for high-eccentricity librations (k. > 0.1), in the limiting case where ¢; ~ 0, while the
ult given by Greenberg and Franklin is valid for small-eccentricity librations, where ¢, is finite; we may note that
=~ 0 when the averaged semi-major axis is close to the critical value corresponding to the vertical asymptote to the
ricentric branch. For libration centers with small eccentricity, apocentric or pericentric, a is far enough of these critical
ues and o7 is small but finite.

In fact, this second law is weaker than the law of structure, since it is obtained from a reduction of the
miltonian strongly influenced by the hypotheses made on the order of magnitude of the quantities involved and is
id only when o} is close to zero while the law of structure was obtained from a Hamiltonian where only the terms

, 2
tored by e},, were neglected.

Figures 12 give this law in a wider region for the resonances 3/2 and 3/1. In both cases the abscissas are
: eccentricities of the libration centers and the two continuous lines give the minimum and maximum absolute values

29 = k. + Bejypexp oy @)

0.07 - .
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Figure 11. Amplitude of the forced mode of oscillation induced by the eccentricity of Jupiter.
Solid-line: high-eccentricity libration model. Dots: Schubart’s results from numerical averaging
and integration.
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Figure 12. Minimum range of variation of the eccentricity of a resonant asteroid forced by the
eccentricity of Jupiter. (a) Resonance 3/2; (b) Resonance 3/1.

as 0, circulates. The fact that in both cases the upper limit reaches the level 1.0 means that the corresponding orbits
may reach e = 1 and escape from its original region in the Solar System, even in the case of a libration with a very small
amplitude (A = 0).

In fact, the theory of high-eccentricity librations is no longer valid when | z — k. | becomes large. Anyway,
this result shows the existence of a barrier which must play a role in the actual distribution of the asteroids. It is
meaningful that, in the resonance 3/2, all asteroids always have eccentricities below 0.34 (see Nakai and Kinoshita.
1986), far below the region where a sharp increase of e is possible. In the resonance 2/1 this barrier is higher. The
sharp increase occurs only after k. = 0.6, a value also larger than the observed eccentricities of the Griquas. Also in the
resonance 3/1 the observed values are less than 0.6, i.e., on the left of the sharp increase of the upper branch of Fig.
12(b).

The double resonance represented by ¢ = &; = 0 is the mechanism responsible for the limitation of the
mean orbital eccentricities of librating asteroids. We note that it may not act alone, but in conjunction with the instability
of librations to displacements perpendicular to the orbital plane discussed in the previous section, because of the almost
coincidence between the forbidden intervals provided by the eccentricity forced by Jupiter with those where @ < 0 in
Fig. 7.

A final remark must be done concerning the resonances with ¢ > 1. In these higher-order resonances the
transformation of Sessin is valid for e >> €j,p only. Otherwise more than three components should be considered in Fig.
8.

" 1V. PLANAR COROTATIONS

An asteroid is said to undergo a corotation when it is simultaneously involved in both a mean-motion anc
a secular resonance. The bases of the theory of the planar corotations are the same of the theory of high-eccentricit)
librations, with the only difference that now the expansions are done around the exact corotation (or corotation center
instead of the libration centers. The results obtained so far show the existence of linearly stable and linearly unstabl
corotation centers at finite eccentricities.

Corotation centers are orbits given by the equilibrium solutions of the averaged equations of motion
Ferraz-Mello (1990) has shown that a necessary condition for an orbit to be a corotation center is '

o =0 (mod /q) .
o1=0 (mod ). @®

The conditions for having a corotation center are far more strict than those given by the law of structure
for the libration centers. There, we have o = 0(mod 7/q) only, leading to a law relating the semi-major axis and the
eccentricity. Here, we have a second relation to be fulfilled, corresponding to a second, independent, resonance, whick
leads to a new law relating the eccentricities of the orbits of the asteroid and Jupiter. )

Figure 13 shows the exact corotation solutions for q=1 and p=1,2,3,4,5. The vertical axis represent:
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k = e.coso and the horizontal axis represents s; = €jupcosay. Thus, in both cases we have a kind of algebraic value
of the eccentricity whose absolute value is the orbital eccentricity and whose signal is determined by the position of the
corresponding body — the asteroid or Jupiter — at the time of their symmetric conjunction. It is positive if the body is
at the pericenter of its orbit and negative if it is at the apocenter. The sections indicated with dots are those where the
solutions are linearly stable.

0.5

38:2

PARTICLE ECCENTRICITY

2:1

N\ I

-0.4 -0.2 ] 0.2 0.4
PLANET ECCENTRICITY

Figure 13. Exact corotation solutions for the resonances 2/1, 3/2, 4/3, 5/4 and 6/5. The vertical
axis is e cos o and the horizontal axis is e, cos 0. )

The intersections of the solutions with the axis e;,, = 0 correspond to bifurcations where the two branches,
table and unstable, merge into one periodic solution of the circular problem. The values e = 0.73 and e = 0.45 found for
hese bifurcations in the resonances 2/1 and 3/2, are the same known from the studies of periodic orbits of the restricted
yroblem (see Hadjidemetriou, 1988). For each of the resenances 4/3, 5/4 and 6/5 two intersections are seen: the lower
me is a bifurcation but those situated higher are only apparent and due to the graphic routines used. '

Similar results were found for the resonance 3/1. In this case we have two bifurcations, one at the origin
nd the other at e = 0.8. These results deserve some comments. We first observe that the known and suspected 3/1
ibrators have eccentricities smaller than 0.6 (Nakai and Kinoshita, 1986; Klafke and Sato, 1989). The integrations made
vy Nakai and Kinoshita show that the eccentricities of (887) Alinda, (1915) Quetzilcoatl and (2608) Seneca may reach
1.8; in the case of Alinda it is also shown that, for the next 12,000 years, the angle @ — @}y, (or a; — o) will decrease
rom its present value of 85° to 71°, but it will increase again after that time. During the next 20,000 years this angle
vill vary of no more than 15° showing a situation very close to a secular resonance. However, this large variation in the
:ccentricity is not confirmed when the perturbations due to all known planets is considered (Milani et al.,1989). The
rariation in the next 20,000 years, according to Milani et al., reaches only e=0.7 while values as high as 0.85 could have
reen reached 100,000 years ago, but before the capture of Alinda into a resonance 3/1.

The unstable corotation solution at the origin e = e jup = 0, found in all resonances with ¢ > 1, is on the
rigin of the eccentricity jumps found by Wisdom (1983). As he later showed (Wisdom, 1985), there is a chaotic region
nvolving the small regular region of very low eccentricity, where the asteroid may be driven to eccentricities as large as
).3. It is worth mentioning that Wisdom theories, as well as the one recently completed by Henrard and Caranicolas
1989), also show the high-eccentricity corotation zone but at a lower eccentricity (=~ 0.3), a result probably due to the
naccuracies of the classical Laplacian expansions used in their theories.

We mention that Morbidelli and Giorgilli also determined the corotation centers of some resonances. Their
‘esults, shown in Table I for e;y, = 0.05 agree with those of Ferraz-Mello (1990). They are also confirmed by Yoshikawa
1989) who mapped a twice averaged Hamiltonian. Yoshikawa’s averaging is done over the mean anomaly of the asteroid
notion and, then, over the argument of the perihelion (or, equivalently, the longitude of the ascending node, since his
rariables are chosen in such a way that Q appears only through w = @ — Q). In this second averaging, the angle o is
tept constant and equal to the value it has at a libration center. The twice averaged Hamiltonian is then mapped into
he plane (e, — @jyp); the singular points correspond to corotation centers.
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TABLE I. Corotation centers for e;u, = 0.05 (Morbidelli and Giorgilli, 1989).

Resonance Eccentricity w - wWyup Stability
3/2 0.49 0 unstable
0.42 L3 stable
2/1 0.76 T unstable
0.71 0 stable
5/2 0.014 0 unstable
0.045 s unstable
0.27 0 stable
3/1 0.1 0 unstable
0.82 0 unstable
0.79 T stable
7/2 0.026 0 unstable
4/1 0.011 0 unstable
0.085 .o unstable
0.45 0 stable

V. THE NON-REGULAR MOTIONS

‘ The regular motions considered in this paper are oscillations about the stable periodic orbits of an abridged
integrable version of the dynamical system representing the motion of an asteroid disturbed by Jupiter. In the phase
space of this integrable system there are stable and unstable periodic orbits. For example, the apocentric branches, shown
in figures 3 and 5, continue downwards, almost symmetrically to the pericentric branch, but as locus of unstable periodic
solutions whose stable and unstable manifolds are the boundaries separating different classes of regular motions. When
the full non-integrable dynamical system is considered, the thickness of these boundaries becomes finite and they become
seat of chaotic motions. These chaotic zones are not the only ones and the improvement of the abridged integrable
models shows a complex web of these manifolds (see Lemaitre and Henrard, 1990). Anyway, when the asteroid moves
far enough from Jupiter, the perturbations of these integrable models are small and we may be sure of finding regular
motions around stable periodic orbits as the librations centers and the corotation centers.

Thus, the known Hildas seem to be moving in regions of regular motion, as far as the integrations are
limited to 100,000 years and only the action of Jupiter is considered (Wisdom, 1987). We do not know what would
happen if large time spans were considered. Indeed, the very nature of the Lyapunov test, used to decide on chaoticity
or regularity, does not allow us to discard the possibility of finding a chaotic behaviour in future integrations extended
over still larger times. :

Some librating asteroids are, in fact, in a temporary capture at a resonance, moving inside the thick layers
of chaoticity, and integrations over 100,000 are enough to reveal it. Also, the consideration of close approaches with
Jupiter and the inner planets accelerates the excursions through the non-regular zones. One example is (887) Alinda
whose crossings with the Earth will be responsible, in a short time, for a change from libration to circulation and, 10,000
years later, to a change back to libration (Milani et al. 1989). Another example is the asteroid (3552) 1983 SA, presently
lying in the resonance 4/3 (see Figure 14) but, in fact, in a 60,000-year wandering path through the first-order resonances
3/2,4/3, 5/4, 6/5 and 6/7 (this one exterior to the orbit of Jupiter).

VI. CONCLUSION

The introduction of new concepts for the expansion of the disturbing potential in the restricted problem
allowed several authors to obtain results leading to a new insight into the regular solutions of the planar elliptic asteroidal
problem averaged about a resonance with Jupiter. We mention the law of structure, relating the semi-major axis and
the eccentricity of the periodic solutions called centers of libration, the stability and period of these solutions and the
terms forced by the eccentricity of Jupiter. We also mention the corotation orbits — orbits where a mean-motion and a
secular resonance happen simultaneously. In this case the eccentricities were determined as a function of the eccentricity
of the disturbing planet (Jupiter).

It is worth emphasizing that almost all results described in this review were obtained without numerical
integrations of the differential equations, and, in this sense, are general. They are, formally, analytical — even if numerical
quadratures are necessary to obtain some functions; for example the coefficients R ; of eqn.(3) — and provide laws relating
several kinematical parameters.
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Figure 14. Variation of the semi-major axis of (3553) 1983 SA over 200,000 years (Milani et al.,
1989).

The results were compared to those obtained with other techniques, by other authors, showing good
greement. The main quantitative differences where found when comparing to results obtained using the classical
aplacian expansions which, as is well-known, fails to give a good representation of the disturbing function, even for
10derate eccentricities. An important limitation of the results obtained so far lies on the fact that the only planet
onsidered is Jupiter and even this planet is taken in a fixed orbit. In fact, the motion of the perihelion of Jupiter affects
he results by changing the scale of the figures obtained along the vertical axis. For instance the values of the eccentricities
f the corotations centers are smaller when the perihelion moves directly. Thus, as the motion of the perihelion of Jupiter
aries from -10 to +10 arcseconds per year (Knezevic, 1986; Laskar, 1988), with a relatively short period (40,000 years),
he actual motions may have features still not shown in the models considered.
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