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RESUMEN. Se investiga la influencia de un campo de velocida-
des de gran escala sobre la accibn del dfinamo cinemético tur
bulento. Usando un proceso de expansién, las soluciones se
encuentran en el limite del movimiento global y de cizalla
pequeiio y para n@meros grandes de Reynolds. Se calcula la re
jeneracibn magnética hasta un segundo orden en el parémetro
de expansibn usando células convectivas ciclotr6nicas para
el campo turbulento de velocidad.

ABSTRACT. The influence a large scale velocity field upon
the kinematic turbulent dynamo action is investigated. Using
an expansion process, the solutions are found in the limit
of small bulk motion and shear, and for large Reynolds num-
ber. The magnetic regeneration is calculated up to second
order in the expansion parameter using cyclonic convective
cells for the turbulent velocity field.
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I - INTRODUCTION

The kinematic theory of turbulent dynamo proposed by Parker
<1955> has been able to explain how astrophysical magnetic fields are
generated and sustained. The difficulties encountered in solVing’ the dynamo
equations however, have led many authors to employ different approximations
and simplifications. The most common approximation is the so called
“first-order smoothing"” approximation and is used on almost every work
Moffatt, 1970, 1974; Lerche, 1971b; Levy, 1978)>. It neglects terms which
containing products of the turbulent component of the velocity and magnetic
field.

Frequently two different limits are used: in a high conducting
medium the magnetic Reynolds number Rm may be taken as being infinite and
the diffusion can be neglected (Parker, 1955, 1970)>. On the other hand, for
a poorly conducting medium, where Rm is low, the field variation is slow
and time derivatives are negligible compared with the diffusion term
(Moffatt.,, 1970; Lerche, 1971b)>. Improvements to these limits have been made
by Levy 1978> who calculated the regenerat.ioﬂ term of the dynamo equation
for finite but high Rm in the particular case of the cyclonic convective
eddies whereas Carvalho and Pires (1986)> used the same velocity field to
calculate a general solution for the turbulent component of the magnetic
field which is valid for arbitrary values of the magnetic Reynolds number.

Usually only small scale turbulent. velocity field are taken into
account. The inclusion of a large scale velocity field makes the dynamo

equations quite complex and only when one considers small bulk velocity and
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shear the mathematical difficulties can be overcome. Some authors (see,
e.g., Lerche 1971a, 1971ib; Krause and Roberts, 1973)> have examined this
problem although no concrete example has yet been worked out. Specific
calculations of the regeneration term dLevy, 1978, dCarvalho and Pires,
1986> often neglect large scale motion.

Here, we study the effect of a small bulk motion on the
regeneration term of turbulent dynamo employing the high magnetic Reynolds
number approximation. The c¢yclonic convective turbulent cells of Parker

(1970> are used in order to allow comparison with early work.

II1 - The Effect of Small Bulk Velocities

Suppose a magnetic fleld B8 and a velocity field ¥ wich can be
separated into a large scale and a small scale field such that B = ﬁo + B
and ¥ = VO + Vv , where ﬁo and VO are the large scale component and B and v
the turbulent component of the magnetic and velocity field respectively.
The ensemble averages <B> and <V> of the random components of the fields
vanish and the mean fields ﬁo and Vo are essentially constant over the
small scale ¢ of wvariation of 3, although Vo may vary on a large scale 2£»{.

The dynamo equations are

a B
S - pvV?EB = PV xBO>+Ix<YxB> ad
(o] [e) o
at
és 2 - -+ . .
-_— - DV b = x < x b >+ x (v x > . 2
gt o o

where the magnetic diffusivity Iis D-cz/4rw, with ¢ the electrical
conductivity. Here we have used the usual smoothing approximation and
neglected the term ¥ x [ V x B > - < Vv x B >. The solution of Equation
2> for B together with Vv can be used to calculate the regeneration term <
VvV x B > appearing in Equation {1). Let us write Equation (2> in terms of
dimensionless variables. We shall use two scales { and £ so that X = ¢ 31 +
2 itz » where i\'1 and ;z are dimensionless. The scales { and &£ are the
characteristic length of v and of VO respectively. We also define the
characteristic time 7 and velocity u of the turbulent velocity field v and
write t = T t’, v = u v’ and Vo = u Vo’ » while the quantities ¢ 2, u, 7
are related through u = ¢ ™ and ¢ x & £ . Here £ 1is a dimensionless
parameter and £ « 1. '
Keeping only terms to second order in £ Equation (2> becomes
aB
— eV B -2V B maPIOB + (VVOB + sBIDY + B IOV
ot 1 3 o 2 o1 2 o 1

where we suppose that the fluid is incompressible, that. is, V.Vo’ and YV
are equal to zero and e.ﬁo = 0. The gradients with respect to the variables:
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i:; and 5; are respectively V; and ‘V‘; , and V: “is given by V;.V;. in
deriving Equation (3> the high magnetic Reynolds number approximation has
been used. If the fluid possesses a high electrical conductivity, Rm-ut/D
is large (small magnetic diffusivity) and of the order of 1/¢.

The turbulent. component. of B can be asymptotically expanded near

=m0 to give B = Bo + £ 'b: + szi;z + ... . Our analysis is restricted to the

small bulk velocity limit. If we suppose that Vo is sufficiently small we
can make the substitution Vo’- sﬁo' in <(3>. Using the above expression for

>

b and equating coefficients of equal powers of £ in (3) we obtain:

éB 8B

°© = @B ¥ Ga 1 = B+ @DIOB (5b>
gt o1 ot 1 o o1 o
ab

2 2 B+ @I + IR+ B IO+ 20 B 5ed
a L 1 1 o 1 1. o 2 o o 2 (o] 8 [o]

The turbulent component of B can now be calculated up to second order of
approximation, as long as expressions for v’ and Vo’ are given explicitly.

As one should expect Equation Ga) which corresponds to the
infinite conductivity approximation already derived by Parker 19703, is
identical to that found by Levy <1978> <(his equation 12a for the vector
potential). The discussion made by Parker of the effect of velocity shear
on the large scale component of the magnetic field does not include the
bulk motion in the calculation of the regeneration term. This is justified
only in the present case since the large scale velocity is much smaller
than the turbulent velocity and ﬁo does not appears in (5a). Equation <Sb)
corresponds to Levy’s first order finite conductivity limit with an extra
term accounting for the presence of bulk velocities (ﬁo"aRBo' Large scale
shear does not contribute in first order but only in second order in £ as
we can see from Equation (5c¢). In fact, only the forth term on the right
hand side of <5¢) contains derivatives of ﬁo with respect to i:z.
Integrating Equation (5> we obtain B which is then’ used in the next section

to calculate the regeneration term v x B> (Parker, 1970).

III - Results and Conclusion
Ve use the same form of the turbulent motion adopted by Parker
<{1970> for cyclonic convective cells. This allows comparison with previous
results and to evaluate the ef’fedt.s of large scale motion on the
regeneration term. The expression of the cartesian components of v are
given by Carvalho and Pires <1986> and we do not reproduce them here. The
»

time dependence of each convective eddy as follow: v (;,t) = VD If 0 <

t = 6t and equals to zero otherwise. Here &t is the average lifetime of the
cyclonic turbulent cells.
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At this point, in order to proceed the integration of Equation 5>, it
is necessary to give the explicit form of the spatial dependence of Vo
which we approximate as follows:

é Vo L ° Vo »
- 2 = g 2tV i=1,2,3
i o
a X, a xi

where X =X, X my and X =Z. Moreover, the null-divergence condition gives
qux+quy+qsz-0. 9 is a measure of the large scale (8> variation of Vo in
the direction X and is supposed to be constant. Although the above
approximation is rather crude, it represents a compromise if one wishes to
produce a specific example, and at the same time avoiding rather cumbersome
calculations.

The large scale magnetic field is taken to lie in the
x-direction. Since the small scale motion has cylindrical symmetry there is
no loss of generality in this choice as far as the x-y plane is concerned.
Also, we shall only examine the particular case where the large scale
velocity is on the x-y plane. The components of the regeneration term <vxb>

are shown below to second order in &. Order Zero:

32

OB >m -1 [TV, yvab ceed st2 B , <Uxb > m <UxB > = 0 <7
[ 3% 4 2 12 x oy oz
- & mn a2 b 3
First order: £<vxb > = [——] VVVD p = SLB , <UxB > adUxb > =m0 8>
1 x 2 12 1 a x 1y 1z

a2
Second order: £<¥ x B > = L [T v VV._ B - D%, —1 st
2" % 2 12 x 2 ab

1 b 4 2 2 1 3
+ g a &t [ 3 Vx + Vy ] + iz ab (1+0) &t Vx qx ]
a2
2,4 - 1 T 1 b 4 1 3
e <Kv x b2>y = Z [—2-—] w Vivzvx Bx [ Z ; &t Vy + '-3- ab (1+a) &t qy ]
2,4 > 1 24 a2 3
€<v xb> w — | v VVV B ab (d+od &t° g <9
2z 4 2 12 x  x z

Here » denotes their rate of occurrence per unit volume and «, 3, yi and ;vz
are defined as follow

2 2

-2 A 1 . N PO - -1
x=t cz,ﬂ-4bz’r‘-§“+a)ﬁ+1’}2- z[ﬁ ﬁ][a 1]+{1 E]

Equations (7> and (8> show that the results for zero and first

order in £ are identical to that obtained by Levy <1978>. The bulk motion
and .shear appears as a second order effect as it can be seen from Equation

<9>. The above result can be more clearly seen 1if we simplify Equations
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C7>-¢9> by making a, b and c¢ equal to £ and put, following Parker <1971,
va1/87t and &/‘r::uzvz, with 726t. The regeneration term which 1s the sum of
7>, (8> and (9> assumes the form

s = ) s oo 28y s 1 TV 1 Y
% 4| 2 1 x 3 |u ¢ 4 |u ¢ 4 u? 3 u Y
-+ > 1 n arz 1 vxvy 1 vx e 1( n a2z vx

<be>y - z[ Z ] Vin bry uz + 3 u qyt » (VXb)z - 2—4—[ 3 ] Vin—-u—- qz‘

This shows the relative importance of magnetic diffusivity, convection and
bulk shear to the dynamo action in the limit considered here. The turbulent
dynamo action contribution to the x-component of B is entirely due to the
bulk velocity and its derivatives as it can be seen by taking the above
result into Equation (1). Its effect, although small, can not neglected.

We notice that. the conclusion of Lerche (1971b)> that, for a small
bulk velocity parallel to the field B, its contribution to the dynamo
action is null, is only true to first order of approximation. The present
results show that there exist a second order contribution from the bulk
motion even when ¥V and B are parallel. Also, by examining the terms
containing the derivatives of ¥ < qxvx apd qux > in (9> we can establish
that there will be no dynamo regeneration due to bulk velocity shear if v
is perpendicular to B.

In conclusion we can say that if the bulk velocity is of order &
compared to the turbulent velocity or if the shear motion has also spatial
scale of order OCsd> compared to the scale of the turbulent cells, then,
their contribution to the regeneration of the large scale magnetic field,
for cyclonic convective eddies, is a second order 0¢e®  effect. On the
other hand, if this is the only contribution to the dynamo regeneration of
the magnetic field, as the present example shows, it can not. be neglected

and must be appropriately accounted for.
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