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RESUMEN. Se describe brevemente la ccuacién de estado que se utiliza
en los cdlculos de opacidades del Proyecto de la Opacidad.

ABSTRACT. The equation of state used in the opacity calculations of the
Opacity Project is described briefly.

Key words: EQUATION OF STATE - OPACITIES

I. THE EQUATION OF STATE IN ASTROPHYSICS

The need for an equation of state (EOS) occurs in many areas of astrophysics.
If we restrict attention primarily to stellar astrophysics then we encounter the EOS
heavily in two applications: (1) stellar evolution and hydrodynamics codes and (2)
calculation of opacities.

In stellar evolution codes we always require a mechanical EOS of the form p =
p(p,T) and a caloric EOS of the form e = e(p,T). Here p is pressure, e is material energy

density, p is density, and T 1is temperature. Depending on the physical conditions
addressed, the underlying physics may be simple (essentially ideal gas) or complex
(relativistic, degenerate, phase transitions, ...). Most evolution codes use some form

of a Henyey method so we also need quantitites like (8p/dT),, (dp/dp)r, (3e/3T),, and
(3e/dp)r. At a practical level, the tables for p and e and their derivatives must be
smooth so that reasonable derivatives can be estimated for the Henyey procedure; otherwise
the evolution code will just crash. For stellar stability analyses we require quantities
like the specific heats c, and c,, and the generalized adiabatic gradients I';, I, Ij.
These depend upon the next higher level of derivatives of p, e, and the derivatives given
above, and are therefore even more demanding on the smoothness (differentiability) of the
calculated EOS.

For stellar opacities we require the occupation numbers N;j. of the excitation
states i of the ion stages j of each chemical element k in the mix so that we can add up
the absorption from all atoms, ions, and molecules present. In the EOS calculation itself
it is much more convenient and economical to work with total ion densities Ny, from which
the occupation numbers can be reconstructed at a later time.

II. THE FREE ENERGY METHOD

(a) Basic Physical Picture

For the thermodynamic equilibrium of an ideal gas we can in principle use the
Boltzmann—-Saha equations. (Even then we face the problem of divergent partition
functions). But to work at higher densities we need to account for nonideal effects
resulting from various types of interactions amongst the particles in the plasma.

Two basic formalisms have been developed, one using the physical picture (see
the paper by F. Rogers in this volume). The other involves the chemical picture in which

one makes two key assumptions: (1) that one can identify clusters of fundamental particles
as entities such as "molecules," "atoms," or "ions," and (2) that the partition function
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of the canonical ensemble is factorizeable, i.e.

Z = Zirans * Zinternal °® Zconfig . L

Clearly both of these assumptions must break down at sufficiently high densities, at
sufficiently low temperatures. For example, at high density and low temperature, material
is found in a crystal lattice, in which electrons are not bound to individual nuclei but
are free to roam in conduction bands formed from the coalescence of many isolated-atom
eigenstates. Thus, the distinction between "bound" and "free" electrons becomes blurred.
Likewise equation (1) must fail at sufficiently high densities because the atomic/molecular
eigenvalues can become functions of p and T, or put another way, the same physical effects
that determine Z,,.¢;, may influence Zjp4e;na.; significantly.

b Methodolo

The free energy method is usually implemented along the lines pioneered by
Gilda Harris (1-5) and has been elaborated by many other authors (6-9). One notes that
for given T, V, and chemical composition, thermodynamic equilibrium is achieved when the
Helmholtz free energy F achieves an absolute minimum with respect to allowed variations
of the complete set of ion densities (Nj). The interactions are in general strongly
nonlinear, so one resorts to a numerical iteration scheme, preferably a second—order scheme
like Newton—-Raphson, to determine the appropriate ion densities. A detailed description
of the methods we have used is given in (10-12), so we will make only a few brief comments
here.

The free energy of a mixture of gases is

F=-KkIEN, fn2Z (2)

where "s" denotes "species" (i.e. a specific ion of a specific element) and the sum extends
overall physically allowable species. If we assume that Z is factorizeable, then F is
modular :

F-F1+F2+F3+F4 (3)

which is convenient because then different physical pieces can be put into separate
subroutines. We used (thus far) four contributions to F:

F;: translational motions of classical point particles (nuclei),

F;: internal energy of all molecules, atoms, ions, summed over all rotation,
vibration, and electronic excitation states

F;: translational motions of partially degenerate electrons
F,: coulomb interactions among free charged particles.

F, and F; are standard; F, comes from (6). F, is the difficult term because the sum over
all eigenstates of an unperturbed atom or ion is infinite, some kind of (physically
sensible) "cutoff" procedure is needed. In our work we used special care to get analytic
(differentiable to all orders) mathematical representations of the F's. This assures
smoothness of F and all its derivatives for stellar evolution work, and also allows us to
use analytical derivatives in the Newton-Raphson procedure, which enhances convergence.

(c) The Internal Partition Function -

. The fundamental problem to be overcome in a practical implementation of the
free energy method is that the sum

Zy = B gy, e (4)
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diverges for atoms and ions. On the other hand, common sense tells us that this divergence
must be only formal, not physical, because for an atom in any real environment, high
quantum—number states must be strongly perturbed, and eventually destroyed, by neighboring
particles once their radii are of the same order as the interparticle separation. Thus
we must introduce some kind of cutoff in the sum in equation (4).

Several cutoff procedures have been proposed over the years.

(1) Fixed ng,,; stop the sum at some prechosen ng,,,. This idea is clearly
unphysical because we know that ng,, must be f(p).

(2) Use a Debye-shielded potential (which has a finite number of eigenstates)
as the atomic potential. This approach is unsatisfactory because (a)
eigenstates disappear wunto the continuum abruptly, which produces
discontinuties in F, hence é—functions in the derivatives of F, and worse
behavior in the higher derivatives; and (b) the large density-dependent
lineshifts predicted by this model are not observed (10). Indeed it can easily
be shown that a Debye potential is not a valid intra—atomic potential under any
realizable conditions (10).

(3) Confined—atom model where the atom resides in a square—well potential whose
radius depends on the interatomic spacing. Again this is an unphysical
potential leading to a discontinuous F as in (2) above. Further, this model
makes no distinction between charged and neutral perturbers, which one knows
is unphysical.

Both laboratory and astronomical spectroscopy can provide direct guidance on
how to proceed. For example, if one observes the spectra of A-type supergiants, dwarfs,
and white dwarfs in the region of the confluence of the upper Balmer-series lines into the
continuum, one finds that as the density of the atmosphere increases, we see fewer and
fewer lines in the series. For supergiants one sees up to n’ = 40, in a dwarf one sees
n’ = 16, and in a white dwarf to n’ = 8. Heuristically one has the picture that the upper
states suffer disruption, broadening, and dissolution, and that at and above some critical
p all states with n = ng,(p) will merge and/or dissolve into a pseudocontinuum which
merges continuously with the "real" continuum.

Thus from the point of view of reproducing the observable optical properties
of the material, it seems reasonable to assign an occupation probability w;s to state i of
species defined such that w;, gives the fraction of atoms/ions in that state which are not
disrupted by the fluctuating fields from interactions with other particles during the
lifetime of the state. We then rewrite the internal partition functions as

Z*s _ z Wis Bis e Eis/kT (5)
i

(d) Occupation Probabilities

We know qualitatively that the more loosely-bound states are more easily
destroyed, which implies that w should be essentially unity for the most deeply bound
states, then drop rapidly at some characteristic np.,(p), and be essentially zero for n >
Npax. Clearly such a probability distribution keeps Z* bounded. We must require w to be:
(a) a physically sound function of particle density, electron binding energy, ...; (b)
continuous and differentiable.

The two problems we now face are: (a) what physical theory do we use to compute
w, and (b) how do we assure that the procedure outlined above is statistical-mechanically
consistent? In (10) we calculated w as the result (i.e. the product) of the probabilities
of two independent physical processes: (a) neutral-neutral interactions using a hard-sphere
model; and (b) stark ionization produced by charged perturbers. In the latter we have used
a full quantum mechanical theory to calculate level crossings and the resulting escape
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probability. In our initial work we made the nearest—neighbor approximation for the
microfield distribution; at present we can use detailed distribution functions including
plasma correlation effects.

If we were simply to choose some w;, in Z*; out of "thin air," the resulting
theory would be inconsistent and ad hoc. But a rigorous basis for the occupation
probability formalism was provided long ago by Fermi (13), Urey (14), and Fowler (15).
Fermi showed the essence of the problem by considering a single—species gas, which Fowler
generalized to include multiple ion stages of several chemical species; Urey worked in
terms of fugacity and a virial expansion technique.

Following Fermi, write the free—energy of a single-species gas as
F=-nkT (3/2/n T+ nV + In G + 1) + £ nje; + kKT T n; £n ny (6)
. i i

where n = £ n;. Now add a nonideal term f£(T, V, {n;}) to equation (6). Then one can show
i

]

L~ expl—(e; + g—@/kn/z %

where

- of
Z = ? exp[—(e; + ani)/kT]' (8)

We see that equation (8) is exactly of the form as equation (5) if we just identify

af
w; = exp(-— ?ET/kT)‘ . (9)
i
Using (7) and (8) back in (6) we get
F=-nkT (3/2 ./n T+ nV - fnn+ £n G + 1) — nkT £n Z" (10)
af
R RN
i
From Fermi’s analysis (and Fowler’s generalization) we can draw the following conclusions:

(1) if there 1is a nonideal interaction, then the partition function must
contain an occupation probability of the form of equation (9);

(2) if the strength of the perturbation increases with perturber density and
the quantum number of the bound state, then w; - 0 as n - o;

(3) if the interaction is linear in the perturber density, then the last term
of equation (10) is zero, and the whole effect of f is taken care of in Z*.

The condition of linearity stated above is true for coulomb -interactions where only the
charge of a perturber, not its quantum state, matters. It will also be true for neutral-
neutral interactions if we can make the low-excitation approximation, i.e. assume that
the great majority of atoms interacting with an atom in an excited state will be in their
ground state; see (10).

In short, the occupation probability formalism, through originally motivated
by experimental results and heuristic arguments, is actually a necessary consequence of
the existence of non-ideal interactions. Further, if the interactions are linear (or
linearizable) in the perturber densities, it is statistical-mechanically consistent to
modify only Z*;. Thus, to within the accuracy of the basic assumptions stated back in
§IIa, this theory is logically consistent.

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



1992RWKAA. . 23. . 127M

OP EQUATION OF STATE 131

Our advantage of this theory is that the w's can be used directly in the
modeling of plasma spectra (16, 17). Detailed comparison with the data in (18) shows
excellent agreement between theory and experiment for the Balmer—line confluence region
of the spectrum. It should also be noted that this theory is not an expansion procedure;
there are no subtle subtractions, cancellations, or renormalizations needed. Rather, one
can treat directly and consistently the fully nonlinear problem, and then make a direct
connection through optical properties with experiment.

III. CRITIQUE

The free energy method clearly must break down at very high densities. As
mentioned before, an archetype would be the crystal lattice where the question of an
electron being "bound" or "unbound" obviously becomes meaningless. Indeed even at much
lower densities in a plasma the split into bound/unbound electrons becomes very ambiguous.
The problem is well illustrated in a diagram by Busquet (19) showing several different
hypothetical electron paths through a plasma. When an electron completes several complete
circuits (orbits) about an ion, it may fairly be considered to be "bound" to that ion.
If an electron shoots by all ions on a (locally) hyperbolic trajectory, it may fairly be
considered to be "unbound." But if the trajectory carries an electron on, say, one or two
revolutions around one ion, then, say, it migrates to another, does another loop or two,
then, say, migrates past several ions before orbiting briefly around yet another ion, we
can say only that it is "quasi-bound," or is wandering about on an equipotential surface
reminiscent of a Fermi surface.

’ Put another way, the occupation probability method gives completely unambiguous
answers when w = 1 or w << 1; in between, some ambiguity (and error) is unavoidable. On
the other hand, the energy range AE, or the corresponding range in quantum number An, over
which w drops from essentially unity to almost zero is very narrow; in fact we always have
An < 1. Thus for calculating ionization equilibria the effect of this transition range
is very small. For calculating opacities the error is negligible if we use the w's to fade
out "line" opacity into an appropriate "continuum" opacity, because total oscillator
strength is conserved. All we are doing is changing the profile determining how this
oscillator strength is distributed. What happens physically is that as w for some level
drops well below unity, any line component from that level will be very strongly broadened,
indeed overlapping with adjacent lines, and is effectively smeared out into the continuum.

The very different activity — expansion methods used by the Livermore group in
their EOS work are discussed extensively by Rogers elsewhere in this volume. One who
examines that theory will find (not surprisingly) that it also has certain difficulties.
And it is natural to ask "which theory should we believe?"

My own answer to that question is "neither," along with the remark that belief
belongs in theology, not science. Rather, our task to develop the logical consequences
of these theories as completely as possible, and then test them with experiment and
observation. In the first category we need analyses of laboratory spectra, preferably at
much higher densities than Wiese, et al. (18). In the second category we have modeling
of white dwarf spectra (high density), solar oscillations, and stellar pulsation.

At the risk of pointing out the obvious, I predict that the next few years in
stellar astrophysics will be very exciting as our new EOS and opacity results are used by
the community.
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