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MOLECULAR EQUILIBRIUM IN STARS
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RESUMEN. Se presenta una revisiéon de los métodos de estudio del equilibrio mole-
cular en condiciones estelares. Todas las constantes de equilibrio para las moléculas
diatémicas y triatémicas se expresan en términos de constantes espectroscépicas,
permitiendo tomar en cuenta totalmente la variacién isotépica. Delineamos los
procedimientos numéricos para la solucién de las ecuaciones de las concentraciones
en equilibrio de un ndmero arbitrario de elementos (incluyendo iones) y moléculas.

ABSTRACT. A review is given of the methods for the study of molecular equi-
librium under stellar conditions. All the equilibrium constants for diatomic and
triatomic molecules are given in terms of spectroscopic constants, allowing full ac-
count to be taken of isotopic variation. Numerical procedures are outlined for the
solution of the equations for the equilibrium concentrations of an arbitrary number
of elements (including ions) and molecules.
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1. INTRODUCTION

Perhaps the earliest recognition of the presence and significance of molecules in stars is that of Secchi who in
1867 classified stellar spectra into four categories: blue-white stars with few metallic lines; yellow (solar type)
stars with many metallic lines; orange-red stars with molecular bands shaded to the red; and ruby-red stars
with molecular bands shaded to the violet. The shading or degrading of the molecular bands, and used by
Secchi as a classification criterion, can be traced to the sign of the coefficient of the quadratic term in the
formula

VU = Uy + am + bm?

for the location in wavenumber 7,, of the lines of a diatomic molecular band as a function of the ordinal

position m. The coefficient b is given by
b=B,— B

where B, and B, are the rotational constants for the upper (u) and lower (1) electronic levels with
B = h/(87%cI) and I = pr?

where I is the moment of inertia, g is the reduced mass and r is the internuclear separation which varies with
the electronic level. The sign of the coefficient b thus depends on the relative values of B (and therefore r) for
the two levels associated with a band. Specifically, for shading to the red b > 0 (i.e., B, > By or r, < 1) and
for shading to the violet b < 0 (i.e., B, < B or r, > r;). However, the direction of shading is not the same
for all band systems of the same molecule so that it is imprecise as a basis of classification. In the Harvard
classification of stellar spectra, molecular bands are recognised in classes G (CH, CN), classes K/M/S (TiO,
Zr0) and classes R/N (C;, CH, CN). A particular feature of the Harvard classification is the branching and
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overlap which occurs for the later spectral classes. Both the Secchi and the Harvard classifications naturally
exhibit the strong correlation with stellar temperature.

In parallel with the rapid developments in the theory of molecular structure, spectra and equilib-
rium, quantitative studies of the abundances of molecules in stars have been made by many workers. Following
the earlier studies of Atkinson (1922), Wildt (1929), Russell (1932) and others, a fairly comprehensive account
of molecular equilibrium in stars was given by Rosseland (1936). The work of Russell dealt mainly with di-
atomic molecules but did also include the triatomic molecules H;O and CO,;. Later work has extended the
study of molecular equilibrium in stars to include polyatomic molecules as well as to the influence of molecules
in the hydrostatic and radiative structure of the stellar atmospheres. The extensive work of Fujita and Tsuji
(see Fujita 1970 for references from 1935) has helped to elucidate the branching of the classification of the
spectra of cool stars as primarily a phenomenon relating to the relative abundances of the elements C, N
and O. The modelling of the atmospheres and emergent spectra of cool stars has demanded a more detailed
knowledge of the thermal and radiative properties of molecules. Monochromatic and mean opacities for stellar
atmospheres including molecular absorption have been studied by Gaustad (1963), Auman and Bodenheimer
(1967), Tsuji (1966, 1971), Alexander (1975), Alexander ef al. (1983) and Carson and Sharp (1991). The study
of molecular equilibrium is a prerequisite for all aspects of molecular physics involving the equation of state,
heat capacity, and radiative transfer.

2. CHEMICAL EQUILIBRIUM

Chemistry relates to the making and breaking of molecular bonds. The simplest case may be represented by
the chemical reaction expressed in the form

A+B=AB.

Each such reaction process may proceed in the forward (left to right) or the backward (right to left) directions,
in competition for the reagents A, B and AB. If the rate of the forward reaction equals the rate of the backward
reaction both reactions will have apparently ceased, and a dynamical balance or chemical equilibrium will have
been established.

2.1. Reaction Rate and Equilibrium Constant

A major key to the understanding of chemical equilibrium is provided by the Law of Mass Action (1864) of
Guldberg and Waage, which states that the rate at which a chemical reaction proceeds is directly proportional
to the concentrations of all the reagents at the time. Other factors can also affect the rate, e.g., temperature,
pressure and physical state. Thus if we express the concentration by number density and denote by ny4, np
and nup the number densities of A, B and AB respectively, the forward rate A; and the backward rate N,
may then be written

N;=ksnanp and N, = kynap

where k; and k; are the constants of proportionality or rate coefficients required by the Law of Mass Action.
For equilibrium we then require Ny = A}, which yields the condition

nAnB/nAB = kb/kf = K,,

where K, is now the equilibrium constani. A more general kind of chemical reaction between the reagents R;

may be expressed in the form
VlRl +V2R2+V3R3+...=ZV.'R,5 =0

1
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wherein the stoichiometric coefficients v; are positive or negative integers which are the numbers of each of the
reagents taking part. The equilibrium condition is now

Hni":Kn or ZV;Inn,-:an,, .

If we use the partial pressures p; instead of the number densities n; to represent the concentrations, the
equilibrium condition takes the form

Hp;"' =K, or Zu;lnp; =hkK,
which with the correspondence p; = n;kT gives

K, = (kT)'K, or nK, =InK, +v In(kT) with v=7_v;.

A further alternative form is obtained by introducing for the concentrations
ci=n;/n=p;/p where n=) n; and p=) _pi
giving
InK.=InK,—vinn=InK,—-vinp.

The above relations do not of course serve to determine the rate coefficients k; and ks, or indeed the equilibrium
constants K,, K, and K., which all depend on the physical conditions. Furthermore, any change of the physical
conditions will alter the forward and backward reaction rate coefficients, but necessarily in different ways. Thus
the equilibrium constant will be altered and the equilibrium concentrations will be shifted in that direction in
which the rate coefficient is enhanced relative to that in the other direction.

2.2. Thermodynamics

From the point of view of thermodynamics, in a system consisting of a mixture of substances R; whose amounts
are not fixed but may vary (due to addition, removal or chemical reactions), the state of the system cannot be
completely specified by two of the state variables T, V, P, E, S but require also the specification of the amounts
N;. Changes in the system, including changes in the N;, must be subject to the laws of thermodynamics
including the relation

dQ =TdS = dE + PdV — Z pidN;
where the chemical potentials p; are given by ‘
pi = (0E/ON;)sy = —T(0S/0N;)v,e = P(OV/ON;)g,s -
Defining the Helmholtz free energy F and the Gibbs free energy G by the relations

F=E-TS with dF = —PdV — SdT + ) p:dN;
i

and

G =F + PV with dG=+VdP — SdT + ) pdN;
thermodynamic equilibrium requires that, at constant T and V, F is a minimum so that

dF = Z[z;dN; =0 and p; = (aF/aN.')T,V
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while, at constant T and P, G is a minimum so that

dG =) pdN; =0 and p; = (0G/ON;)rp .

Now the equation representing the reaction, namely,
Z l/,'R.' =0

implies that
dN;/v; = C(constant)
and the equilibrium condition becomes

ZV,',M,'ZO .

If F and G and thus the chemical potentials y; can be evaluated then the equilibrium condition effectively
determines the equilibrium constant. The classical approach used empirical specific heats for the evaluation of
E, S, F and G, and thence the equilibrium constants (see, for example, Herzberg, 1945).

-9.3. Statistical Mechanics

In the statistical mechanical formulation of thermodynamics a key role is played by the partition function
Z = Z gn exp(—En/kT)

where the g,, and E, are the statistical weights and the energy levels for the ensemble. As long as the individual
members of the ensemble are independent we may write

Z=HZ,- or an=Zan;

where Z; is the partition function for the component consisting of N; members and is given by
Z,' = Z{v : / N,’!

in which z; is the individual member partition function. Using Stirling’s approximation (Inn!=nlnn —n) we
then have
In Z,' = N,' ln(ez;/N,') .

In terms of the partition function the Helmholtz free energy is given by
F=—-kTlnZ=-kTY InZ;=—kT)_ N;In(ez/N;)
so that we now obtain for the chemical potential
pi = (0F/ON;)r,y = —kTIn(z;/N;)
provided the z; are independent of the INV;. Thus we have

Z Vil = —kTZ 14 ln(z;/N.-) =0

giving

[ =Tt or Tl = Ko = GV
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as the condition for chemical equilibrium. We may now expand z; as a product of internal and external partition
functions

2i = Ziin%iex
with
Z,",‘n = Z g,'j exp(—E';j/kT)
j
where now the g;; and E;; refer to the internal energy levels of the member and
Ziee = V(2rmkT/h?)1? = VG,
where m; is the mass. We now obtain

.Kn = H n:"i = H(G,'Z,',;n)"‘ .

Finally, referring all the E;; to their respective ground levels E;; and introducing the heat of reaction H defined
by

H = Z V,’E,‘l
the equilibrium constant takes its more familiar form

.K,, = H(G;Zi,;n)"‘ exp(—H/kT) .

3. DISSOCIATION AND IONIZATION EQUILIBRIUM

The theory outlined above applies equally well to the dissociation of molecules and to the ionization of atoms
(or ions). For the diatomic process A + B = AB the equilibrium condition is pap = pa + pp or

I(n(AB) = nAnB/nAB = (ZAZB/ZAB)(ZkaT/h2)3/2 exp(—DAB/kT)

where now z denotes only the internal partition function, D,p is the dissociation energy, and m is the reduced
mass

m = mamp/map = maymg/(my + mp) .

Similarly, for the triatomic process A + B + C = ABC the equilibrium condition is papc = pa + pis + pic or
K,.(ABC) = nangnc/napc = (2azpzc/2zanc)(2rmkT/h?)? exp(— Dapc /kT)
where now Dygc is the dissociation energy, and m is the reduced mass given by
m? = mampmc/mapc = mampmg/(ma + mp + mc) .
Likewise for the ionization process A = A* + e~ the equilibrium condition is ps = pa+ + pte- or
Ko (A) = np+ ne- /g = (2p+ 2.-[24)(27mkT[1?)*/? exp(—I/kT)

where I is the ionization energy and m is the reduced mass

M= Mp+Me-[Mmp = Mmp+Me-[(Mp+ + me-) & m,- .

The latter form of the ionization equilibrium equation is usually referred to as the Saha formula. For a more
general discussion including electron degeneracy see Carson (1985).
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3.1. Partition Functions
3.1.1. Particles

For particles such as electrons or protons, or atomic nuclei which can be treated as particles, the internal
partition function is simply the spin degeneracy

Zin=¢,=28+1

where s is the spin quantum number.

3.1.2. Atoms and Ions

At the stellar temperatures and densities where molecules are abundant, negative atomic ions, for example, H™,
are also formed, although their abundances are limited by their low electron affinities coupled with a usually
low free-electron density. For such ions the number of bound electronic levels is finite and small, so that the
partition function sum can be readily evaluated (in the case of only one bound level the sum reduces to the
statistical weight of the level). For isolated neutral atoms (and where appropriate positive ions), because of
the Coulomb nature of the field at large distances, the number of bound levels is infinite. For such systems
the partition function has to be evaluated with due regard to the presence of other systems in a real physical
situation. All the techniques for accomplishing this are equivalent to the introduction of a convergence factor
P(n) multiplying each term of the partition function sum

z= Zgnp(n) exP(_En/kT) .

The simplest choice of P(n) is a step function
P(n)=1 for n < nper, and P(n) =0 for n > npg.

which applies a cut-off at some n = n,,,, determined by, for example, the requirement that orbital radius is
limited by the nearest neighbour distance. A disadvantage of this procedure is that it results in a partition
function which is a discontinuous function of the physical variables. An alternative, and more satisfactory,
choice for P(n) is a continuous function which represents a probability that the level n contributes a term to
the sum. Two, only apparently different, ways of viewing this procedure consider P(n) as a factor modifying
either the level degeneracy (Carson and Hollingsworth, 1968) or the occupation probability first introduced by
Claas (1949) and recently re-used by Hummer and Mihalas (1988). If n is the principal quantum number so
that g, is proportional to n?, then for convergence P, must decrease more rapidly than n=3. Assuming that
the orbital radius r, is also proportional to n?, the nearest neighbour probability gives

P(n) = exp(—an®)

where a is a constant related to the nearest neighbour distance. Numerical experiments show that the discon-
tinuous and the continuous probability procedures, when used consistently, do lead to very similar results, at
high temperature and low density.

3.1.3. Molecules

The determination of molecular partition functions is conditioned by the complexity of molecular energy levels,
and we will here only outline the essential features. Assuming that the molecular energy levels—electronic,
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vibrational and rotational—are independent and therefore additive, the internal molecular partition function
can be written as a product of electronic, vibrational and rotational factors

2= 26242, .

For stable molecules the number of bound electronic levels is finite and the electronic partition function can
be easily evaluated given the energy levels E, and the statistical weights

gn = 2(25, +1)/(1 + 62

for levels characterized by the spin and electronic quantum numbers S and A. The potential well of each bound
electronic level only supports a finite number of vibrational energy levels. The energies are given by

Ey(v)/he = we(v +1/2) —weze(v + 1/2)? + woye(v +1/2)° + ...

where v is the vibrational quantum number and w,, ., and y. are constants. In the harmonic approximation
the vibrational partition function is

zy(we) = Y gyexp(—E,/kT) =~ {1 — exp(—hewe /kT)} !

with modifications when anharmonic terms are included. For a triatomic molecule with three normal modes
with wavenumbers w; and degeneracies d;, to the same approximation the vibrational partition function is

z,({wi}) = H{zv(w;)}d‘ = H{l — exp(—hew;/kT)} % .
The rotational levels may be represented by the formula
E(J)/he=BJ(J +1) = D{J(J +1)}* +...

where J is the rotational quantum number and B and D are the rotational constants. The rotational partition
function, in the rigid rotator approximation, is given by

%(B) = ¥ g exp(—Ey /kT) ~ / (27 + 1) exp(—E; /kT)dJ ~ kT/hcB
J

which is accurate to quite low temperatures. Asymptotic expansions, including also the non-rigid terms in the
energy, have been developed for greater accuracy. For a triatomic molecule with three principal moments of
inertia I4, Ip, I¢ and corresponding rotational constants A, B, C the rotational partition function, in the rigid
rotator approximation, is

z(A, B, C) = {m(kT/hc)*/(ABC)}/? exp{— Bhc/(4kT)}

with suitable substitutions for the asymmetric top, symmetric top and spherical top cases. When account is
taken of the possible identity of nuclei in symmetric locations, the rotational partition function must be divided
by the symmetry number o which depends on the symmetry group of the molecule. For two such identical
nuclei in diatomic molecules and triatomic molecules o = 2. For the rare case of three identical nuclei in a
triatomic molecule in an equilateral configuration ( for example, H}) o = 6.

3.1.4. Isotopes

The above theory is readily generalized to include the possibility that each atom may be present in the form
of more than one isotope. Atomic energy levels and partition functions are subject to a very small nuclear
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mass effect which may be ignored in the ionization equilibrium. However, since molecular energy levels,
particularly the vibrational and rotational levels, are functions of the masses of the atoms involved, these and
the associated partition functions and equilibrium constants must be calculated separately for each isotopic
molecule. To sufficient approximation it may be assumed that all molecular internuclear separations and force
constants are invariant under isotopic substitution. Thus, if the spectroscopic constants are available for only
one isotopic variant, they may be calculated for all other isotopic variants. One particular aspect of isotopic
substitution in molecules is the change in the dissociation energy, as measured from the lowest vibrational level,
which has the consequence of energetically favouring the equilibrium abundance of heavier isotopic molecules.

3.1.5. Interactions

Interactions between the members of an assembly may be included through additional terms in the partition
functions. In the general case, the internal partition functions now become functions of the number densities,
thus effectively introducing additional terms in the free energies (Graboske et al. 1969, 1971; Fontaine et al.
1977; Carson, 1985; Hummer and Mihalas, 1988).

3.2. Solulion of the Equilibrium Equations

For each ionization or dissociation reaction there corresponds an equation of equilibrium, each equation linking
the concentrations of one or more compounds with their constituent elements. In the context of ionization
equilibrium the terms ‘compounds’ and ‘elements’ pertain equally well to the various ions considered as com-
pounds of nuclei and electrons considered as elements. To fully determine the equilibrium concentrations of
N, elements and N, compounds requires a total of (N, + N;) relations. Of these N, relations are provided by
the conservation of the number of each element, leaving N, relations to be specified from exactly N, equilib-
rium conditions involving the A, compounds. When account is taken of isotopes, each is treated as a distinct
‘element’ or ‘compound’ with its own conservation or equilibrium condition. Note that there may be more
than one compound involved in any given equilibrium relation, provided that overall each compound appears
at least once. Redefining n; as the number density of each element i which is free (not in a compound), and
N; as the total number density of the same element (i) (both bound in compounds and free), the conservation
of the element requires

Ni=n;+ Y Vin.

where n, is the number density of the compound (c), v;, is the number of times the element (i) appears in the
compound (c), and the sum is taken over all compounds. Using the N equilibrium relations to eliminate the
n. from each of the N, conservation equations then gives N, relations between the A, concentrations n;. The
resulting simultaneous non-linear equations may be solved by iterated substitution or linearization from a trial
solution. Thus by specifying the temperature T and the composition by the N;, the equilibrium concentrations
of all elements and compounds can be determined.
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