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RESUMEN

Utilizando métodos de integracién numérica se resuelven las ecuaciones de
movimiento dindmicas que caracterizan un modelo de Universo constituido de dos fluidos
durante la era de la recombinacién. Asumiendo perturbaciones iniciales en la densidad de
materia del orden de 1076 y en la densidad de radiacién de 10~ 12 se obtienen solamente
soluciones decrecientes.

ABSTRACT

Via numerical methods, the dynamic equations of motion for characterizing a two-
component fluid model of the Universe during the recombination era are solved. The
solutions show only time decreasing behavior for initial conditions in matter, and radiation,

density perturbations of the order of 1076 and 10712 respectively.
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I. INTRODUCTION

Corona (1987) has analyzed the equations of motion for characterizing cosmological models in the
mchronous gauge and has given static solutions for a three-component model of the Universe during the
:combination era. A static solution for a two-component fluid model, has been worked out by Nowotny
981) and the dynamic treatment for one-component fluids has been carried out by many authors, (e.g.
ifshitz 1946, Lifshitz & Khalatnikov 1973; Peebles 1968; Weinberg 1972). However no dynamic solution
r the two-component fluid model has been produced, and the purpose of this paper is to deal with this
roblem. This model leads to differential equations with non-constant coefficients. Therefore, the ansatz e¥?
r the temporal behavior of the solution is no longer appropriate. We have to resort to a numerical solution

fa coupled system of ordinary differential equations for the amplitudes of the matter density A(t), radiation

ensity T(t), perturbation of the metric H (t), and ofits derivative G (t), and perturbations on velocities of the

atter fluid £(t), and radiation fluid §(t), respectively.
Because of numerical difficulties, we will consider the Universe only as a binary photon-gas mixture with
ompton interactions. We will assume for the gas an equation of state of the form

pg = (1 + z)(pg/mu)kp T, (1)

ith the following caloric equation
€9 = pg/(v — 1) + (x/ma)pg = 2

here z is the degree ofionization, x is the ionization potential of a hydrogen atom, « is the adiabatic index (v
+ 5/3 for a mono-atomic gas), py is the pressure of the fluid, py the density, and mg is the mass of a hydrogen
tom.
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A very difficult problem for dynamic calculations, is to find a suitable set of initial conditions for tl
amplitudes of the perturbations (see Rose & Corona-Galindo 1991). However, we have solved the equatiol
forépg/pgo ~107%and 6p,/pro ~ 10712 and we have obtained only decreasing modes. Although no unstab
mode is yet obtained, we consider of interest to report the method of integration of the equations.

The distribution of the paper is the following: in §II we write the equations of motion, in §III we integra
Friedmann equation, in §IV we solve the equations of motion and in §V we discuss the results. Througho
the paper the greek indexes run from 0 to 3, latin indexes run from 1 to 3.

I1. EQUATIONS OF MOTION FOR THE FLUIDS

The set of linearized equations that describe this model in a comoving coordinate system were obtaine

by Corona (1987). For this reason we omit here their derivation and we can immediately write down tl
equations that characterize the system:

The momentum balance equations for the gas and radiation are

Pg0 8% + 2 Hpgo 635 + (6pg,3/a%) = (4/3)(pro/ o) (80} — sv;) =0, (
Pro b9t + H probvh + (3¢2/44%) 6pri + (pro/7o)(6 v} — 6v;) =0. (

The continuity equation of the gas and the energy equation of the photon fluid are
8hg + 3Hépg + pgobvy; + (1/20%) pgo hyy — H (pgo/a?) i = 0, (
8pr + 4Hbpr + (4/3) pro6vi; + (2/3) (profa®) his = 0. (
The energy equation for the gas-component is
6pg + 3H~6py + (v — 1)(€g0 + Pgo) 6v;,,~ +
+ (1/26%)(eg0 + pgo)(v — D his = 0. (
The gravitational field equation is
hi; + 2H hy; = —8xG(6py + 26p7) . (¢

As already mentioned, the coeflicients of the system of equations (3)-(8) are now time-dependent. Findin
analaytic solutions is very difficult, however, a numerical solution is possible and in this section we will repo
a series of solutions for particular initial conditions.

With the assumption that both radiation and gas are in local thermodynamical equilibrium, the model
characterized by only five equations. For this reason, the equation of energy for the gas will be left aside, an
with the aid of the equation of state for the gas, the pressure in equation (3) can be eliminated.

Actually, according to Eq. (1), a perturbation in pressure gives

6p9 = (1 + "‘)(kB TO/mH) 6/’9 + (1 + z)(kB To Pgo/4 myg Pro) épr +
+ (kB T Pgo/mH) bz , (¢

where the relation p, = (40T*)/c between the radiation density and temperature has been used.
The degree of jonization is obtained from the Saha equation for a pure hydrogen gas

2?/(1 — z) = (27 mekp To)%/% (mg/h3 pgo)ezp (— x/kp To) , (1(

z = n./n is the degree ofionization, n. and n are the number densities of electrons and of protons respectivel
Due to its exponential dependence in Eq. (10), the most important effect on the ionization fluctuation come
from fluctuations in the temperature. From Eq. (10) it follows
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6z = [z(1—z)/4(2 — 2)][(3/2) + (x/kB Tb)| (6p+/pro) - (11)

1 Figure 1, z is plotted as a function of z for different values of Nh?,
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Fig. 1. Ionization degree as function of z for different values of N2,
Substituting Eq. (11) into Eq. (9) yields
8pg = (1+z)(kp To/mp)bpg +{(1+2)/4 + [z(1 - z)/4(2 - =) [(3/2) +
(x/kB To)]} (pgo kB To/mir) (8p0/pro) - (12)

iserting Eq. (12) in Eq. (3), the density contrasts

69 = 6/’9//’90 ’

6 = 6Pr/ﬂro )

1d the time scale
dt = (4nG p)~?dr,
here j is the matter density at z = 2000; the following system of equations can be obtained
d85/dr + [2H + (4R/37)| [65/(4nG 5)/?] - [4 R85/ (37 (45G )?)] +
+ [Pao 80,/ (4 (4nG V)| + {1/4 + [2(1 - 2)/4(2— 2)(1 + 2)] [3/2 + (x/kB To) ] X

X [pgo/a2 (4vG ﬁ)] bri =0, (13)

dsit Jdr + [H + (1/70)] [55:'/(47rc ,7)1/2] -

— [655/(ro(axG )Y/?)] — (3/4) [¢2/(a*(4xG )] 8, = 0, (14)

dbg/dr + 3 Hog(4rG ) /2 + 63% + (1/26%) (dhy/dr) — H (hy/a®)(4nGp) 2 =0,  (15)
dé,/dr + 4 H 6,(4xG )M + (4/3) 6vi; + (2/3a%) (dhyi/dr) = 0, (16)

(% hy/dr?) + 2(4xG 5) " /2 H (dhys/dr) = —2(pgo/5)(8g + 2R6:); (17
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where py, represents the unperturbed pressure, 6{;; = 5,,3(4,;(,',’,’)“1/2 and 558 = 6vl (4,.-0;5)—1/‘

This system of equations characterizes our model of the Universe. Before solving it, we will discuss th
calculation of the expansion parameter a(t).

III. INTEGRATION OF FRIEDMANN’S COSMOLOGICAL EQUATION

The cosmic scale factor a(t) of the unperturbed metric for a plane Universe obeys the Fried mann equatio
(¢/a)? = 8%G p/3, (18

where p includes the matter and radiation density. By substituting

Pg = Pgo (ao/a)3 y Pr = Pro (‘lo/‘l)4
into Eq. (17), we obtain
(a/a)® = (87G/3) [pgo (a3/a®) + pro (a5/a®)] .

We change now the variable t through

cdt = adny, (1¢
and get
(da/dn)? = (87G/3c?) (pgoasa + proal) . (2c
Integration of Eq. (20) yields
a(n) = (87G/12¢?) pgo a3 n® + [(87G/3¢%) pgoal]/? 9 ; 1

and with the aid of expression (21) we can integrate Eq. (19) and obtain
t = (87G/36¢%) pgoain® + (1/2¢)[(87G/3¢%) proal]/29? . (22

IV. SOLUTION OF THE EQUATIONS OF MOTION

A qualitative analysis of equations (13)-(17) in order to know if they provide solutions with physical sensc
can be carried out as follows: for a static Universe a = 1 one obtains the following two coupled wave equation
of the matter and radiation density perturbations

6 pm + (4/3) (R/To)6 pm + (kz 03 - 47"Gl’om) Spm — [(6/31'/1'0) + 87Gpom 6Pr] =0, (22

8r + (8hr/70) + [K* €} ~ (32/3) 7G pom RIE pr — (4/8) R[(6pm /70) + 47G pom bpm] = 0, (24
where 7, is the collision time, v, is the sound velocity of the matter fluid and ¢, = ¢/ (3)1/2 is the velocity c

sound for a pure photon gas. With the ansatz A ~ ezp(wt + ik ), where A is a vectorial abbreviation for th
unknowns 6 pm, and & p, we obtain the dispersion relation

wt + W31 + (4/3) R)/7o +w? {k% (2 + v?) — 47G pom [1 + (8/3) R]} +
w (k2 v? — 47G pom [L + (8/3) R] + (4/3)R{k2 ¢ — 47G pom [1 + (8/3) R]})/ro+

+ k2?2 [k2 cf — (82/3) G por| — 47G pom k? cf =0. (25
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Applying the Routh-Hurwitz criterion (Corona-Galindo 1985) for finding the instability conditions, we
obtain the wave numbers

k} = [4xG/(c? + v})] pom [1 + (8/3) R] , (26)

and
k2 = b/a, (27)
where
b= (4xG/r2) pom ([1 + (8/3) R)[1 + (4/3) RI{[(c} + v3)/¥]]((1 + (4/3) R] -

~ (4Re3 [393)[1 + (8/3) R — 1} + (/o) [t + (4/3) RI®) ; (@8)

a = (/)L + (4/3) B (3 /o) {[(c] +vd)/wd] [1 + (4/3) B] -
—(4Rc%/3v2)[1 + (8/3)R] — 1}. (29)
By comparing k; and k; we obtain immediately the condition given by k; as the Jeans instability condition.
It means that the equations proposed here lead to acceptable solutions from the cosmological point of view.
To solve equations (13)-(17) dynamically we assume the solutions are of the form
8y = A(r)exp(i k. z?) ,
6y = T(r)ezp(i ka z%) ,
663 = VI(r) ezp(i ks z°) ,
. 5 (30)
659 = W (r)ezp(i ko z?),
hy; = H(r)ezp(i kq z%) ,
dhijdr = Gy = G(1) ezp(i kg z%) .

Substituting the above solutions into (13)-(17) and assuming the velocity perturbations to be irrotational,
i.e., derivable from a potential v || k, the following six linear differential equations for the unknows A(r),

T(r), ¢(r) = ik;Vi(r), &(r) = ik;W(r), H(r) and G(r):

de(r)/dr + [SH + (4R/310)][s(r)/a] — (4 R/3700) &(r) ~ pgo [K* A(r)/(a® o pgo)] -

~{1/4 + [2(1 - 2)/4(2 — z)(1 - 2)][3/2 + (x/kB To)]} (pgo k*/(a® a® pgo)) T(r) = 0, (31)
de(r)/dr + [2H + (1/7)][€(1)/a] — (1/r00)¢(r) — (33 k?/4a*a®) T(r) = O, (32)
dA(r)/dr + (3H/a) A(r) + &(r) + (1/2¢%) G(r) — (H/a* @) H(r) = 0, (33)
dT(r)/dr + (4H/a) T(r) + (4/3) &(r) + (2/34a})G(r) = 0, (34)

dG(r)/dr + (2H/a) G(r) + (8xG/a®) pgo [ A(r) + 2RT(r)| = 0, (35)
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and
dH(r)/dr = G(r) ; (36)

where we have written o = (4 wGp)l/ 2 and R = pro/ Pgo-

V. DISCUSSION OF THE RESULTS

The system of equations (31)-(36) was solved numerically and the solutions are plotted in Figures 2 and 3
for different masses. In Figures 2 and 3 one can appreciate the decreasing behavior of the velocities £(r), é(r),
the perturbation of gravitational potential H(r) and its derivative G(r), the matter density A(r), and radiation
density-fluctuation T'(r), of the mixture matter-radiation by increasing time 7. For small masses (107 Mg, 10°

Mg) the velocities and density contrasts decrease almost exponentially, but for larger masses (1013 Mg, 1016
Mg) the radiation quantities change very smoothly. The initial values used in order to obtain these figures

1 e p——————— — 1 m—m—r—-r-r————r—r——

7 Y
o8t _ E(T) 10 MO ) o8t “ _ E (1) 109 M@

Fig. 2. Time evolution of velocity, metric perturbations and. density contrasts for 107 Mg and 10° Mp.
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Fig. 3. The same as in Figure 1, but for 1013 and 101® solar masses.

ere: £,(0.8) = 1076, ¢,(0.8) = 1075, H,(0.8) = 10713, G,(0.8) = 10713, 4,(0.8) = 10~¢, and T,(0.8) =
D~12. More values were used, but only decreasing behaviors were found. Although the results are not very
bod from the cosmological point of view, they show however the validity of the method of integration of the
ynamic equations of motion which govern fluids in expansion. The method of integration of the equations
resented here, has applicability in all the cosmological models which take into account the expansion of the
niverse or in hydrodynamic modéls governed by equations of motion with non-constant coefficients, e.g.
1e hydrodynamic treatment of the terrestrial atmosphere.

I am very grateful to Miss Arroyo-Castelazo for typing the manuscript.
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