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RESUMEN

Las estructuras de nudos o condensaciones compactas bien alineadas en chorros
estelares pueden interpretarse en términos de modelos de choques internos cruzados.
En este trabajo se presentan nuevos modelos analiticos y numéricos para la formacién
de choques cruzados en chorros estacionarios. Se encuentra un buen acuerdo entre
los modelos analiticos y numéricos lo cual permite hacer predicciones concretas sobre
las propiedades de los choques cruzados en funcién de los parimetros del flujo. Estas
predicciones son importantes al tratar de identificar las estructuras de choques cruzados
que posiblemente existen en los chorros estelares.

ABSTRACT

The structures of well aligned knots in stellar jets can be interpreted in terms of
crossing shock models. In this paper, new analytic and numerical models for the formation
of crossing shocks in steady jets are presented. The good agreement found between the
analytic and numerical results allows us to present clear predictions of the properties of
steady crossing shocks as a function of the flow parameters. These predictions should be
useful for trying to identify the crossing shock structures that possibly exist in stellar jets.
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1. INTRODUCTION

The subclass of Herbig-Haro (HH) objects called
stellar jets have an emission line spectrum typical
of the cooling regions of shock waves with velocities
~ 20 to 100 km s~1. At this time, it is not quite
clear what mechanism produces these shocks. The
following different scenarios have been proposed

for the formation of the chains of knots observed

in stellar jets:

a) Instabilities at the outer boundaries of jets can
give rise to the formation of internal shocks, which
might correspond to the observed knot structures.
In the context of stellar jets this possibility has
been studied analytically by Bithrke, Mundt, &
Ray (1988) and by Silvestro et al. (1987), and
numerically by Blondin, Fryxell, & Konigl (1990).
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b) A time-variability in the ejection velocity can
result in the formation of “internal working sur-
faces”, which might correspond to the observed
knots (Raga et al. 1990b; Kofman & Raga 1992).

¢) Jets with an initial pressure imbalance with the
surrounding medium develop a chain of steady
internal crossing shocks. The properties of such
flows (in the context of stellar jets) have been
studied -analytically by Cant6, Raga, & Binette
(1989) (hereafier Paper I) and numerically by Falle,
Innes, & Wilson (1987) and Raga, Binette, & Canté
(1990a).

This paper is concerned with the last of the
scenarios discussed above. Throughout this paper,
we will assume that the jet flow is steady, inviscid,
initially underexpanded (Pjet > Pezt), cylindrically
symmetrical and with solar atomic abundances (see
Raga et al. 1990az). In the past, this flow has been
studied both analytically (Paper I) and numerically
(Raga et al. 1990a). The flow is found to develop
a series of oblique, incident and reflected shock
pairs as the gas in the jet expands and contracts
in an effort to balance its pressure with that of the
surrounding medium. These “crossing shock cells”
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are found to be equally spaced, and to have an
approximately constant shock velocity.

In this paper, we present a detailed comparison
between analytic and numerical steady crossing
shock models. The differences found between these
two approaches suggest possible improvements that
can be made in the simplified, analytic approach.
We find that these improvements in the analytic
model to a large extent remove the differences
between the analytic and numerical results.

2. A COMPARISON BETWEEN THE NUMERICAL
AND ANALYTIC SOLUTIONS

In Paper I expressions for the value of the char-
acteristic distances and angles of the first crossing
shock cell (see Figure 1) are derived. This is
done under the assumption that a narrow, highly
underexpanded, highly supersonic flow with an
initial radius equal to zero is injected into a med-
ium with uniform density. The flow is assumed to
have cylindrical symmetry. The jet first undergoes
a Prandtl-Meyer lateral expansion, resulting in a
conical flow of half opening angle a. This sudden
lateral expansion causes a rapid decrease in the
pressure of the gas in the jet. At the point where
the jet pressure falls below the external medium
pressure, the jet starts to become reconfined by the
stronger external pressure by means of a shock (see
Figure 1). The locus of this shock is obtained from
the condition of pressure balance:

P, + GIPjij,, = Pezt, 1)

where P is the centrifugal pressure, e = 2/(y +
1) is a parameter of order unity (with 4 the specific
heat ratio), p; is the jet density just before the shock

incident
shock reflected

{ /Whock

!’g ”_,—/'/ >

| < o o x
\Tw_)

]
1
1 I
|

Fig. 1. Schematic djagram of the first crossing shock cell.
It is shown how the flow is given an initial radius (see §
3) in the analytic solution by moving the origin of the co-
ordinate system in the positive direction along the x-axis.

and Vjy, is the component of the jet velocity normal
to the shock. In Paper I it is assumed that P, <
e;ijjzn, and the effect of the centrifugal pressure is
thus neglected.

Solving the reduced form (with P; = 0) of
equation (1) itis found that the shape of the incident
shock is an arc of circumference passing through the
origin and crossing the symmetry axis again at:

V.0 1/2
azz\(MJVJ> , @

T Pext

where )\ is a parameter of order unity which
depends weakly on Pj/P,,,g; Mj is the mass flux
of the jet; V;° is the initial jet velocity and Pezt is
the pressure in the external medium. The max-
imum separation between the symmetry axis and
the incident shock is:

= 2(1-cosdr) , ®)

where ¢ is the angle formed between the incident
shock and the symmetry axis. Assuming that in the
initial expansion the outer layer of the jet expands
laterally with constant velocity:

2(1—«) ¢?
A el s B )
(v-1)
with ¢ the jet gas sound speed, and:
1-1)/29
= (P ezt) =1/ (5)
K= po ,
J
the initial opening angle of the jet is:
sina = %’3— . (6)
i
We then obtain that:
— . —1 1 K 7
Gt [ EEC

is the angle formed between the incident shock and
the axis of symmetry, and that:

¢Rz_") 8)
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is the angle formed between the reflecting shock
and the axis of symmetry (see Figure 1). Note that
the expressions for the distances ¢ and b (equations
(2) and (3)) are normalized to the radius

R, = [eIMjVj"/Q'ir (1—cos a)P,ztll/z.
The value of the shock velocities associated with
both the incident and reflected shocks are also

predicted. They are found to be similar, and con-
stant:

Vsr ~Vsp ~18.Tkms™!. )

for an initial jet temperature of 104 K.

Predictions of these parameters can also be
obtained from numerical solutions of the steady
crossing shock problem (see, e.g., Ragaetal. 1990q;
Raga 1989). We will carry out a comparison of the
parameters of the first crossing shock cell predicted
by the analytic and numerical models.

In Figure 2 we show the structure of the
flow passing through the first pair of crossing
shocks, which has been derived from a numerical
integration of the steady flow equations. The gas is
injected at £ = 0 and flows along the x-axis. The
dotted lines show 5 streamlines of the flow, and the
continuous lines are isobaric contours. The loci of
the shocks correspond to the regions of “piled up”
pressure contours. In this figure the variables: a, a,
b, 1 and ¢p are the same as those defined above.
The shock velocities (Vgr and Vgg) are calculated as
the velocity of the pre-shock flow perpendicular to
the corresponding shock.

In order to make a comparison between the
analytic and numerical models, we define a “stan-
dard jet”, with physical parameters appropriate for
stellar jets (see, e.g., the observational compilation
of Mundt, Brugel, & Biihrke 1987). These parame-
ters are the following: r? = 1016 cm (initial jet ra-

. o _ 4 -3 e .
dius), n7 = 10% cm™* (initial jet hydrogen number
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Fig. 2. Variables of the flow in the first crossing shock cell. The dotted lines show the loci of 5 streamlines. The continuous
lines are isobaric contours. Characteristic lengths (@, b) and angles (@, ¢1, and §g) are shown. Two successive contours

correspond to a pressure ratio of 2.
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density), V? = 150 km s™! (initial jet velocity) and
1}‘.’ = 10* K (initial jettemperature). The initial ion-
ization fraction of the gas in the jet (nf;/ng)° is cal-
culated assuming coronal ionization equilibrium at
the initial temperature. Our numerical model of the
steady jet flow includes a self-consistent calculation
of the non-equilibrium ionization state and radiative
cooling rate of the gas (see Raga et al. 1990z, and
Biro 1991).

With these initial parameters, the values for
the variables a, b, a, ¢;, dr, Vsr and Vgp were
computed from the analytic expressions, and also
measured from the graphic output of the numeri-
cal code. Note that the final expressions for the dis-
tances a and b (equations (2) and (3)) are normalized
to the radius R, so the comparison is actually made

with the dimensional values ¢ X R, and b X R,
obtained from the analytical model. The flow
variables were calculated for several different values
of the initial jet to external medium pressure ratio
(P;’/P,zt =25,5,7.5,10, 15 and 20).

Figure 3 shows a comparison of the values
obtained for the parameters a, b, @, ¢1 and ¢ (see
above and Figure 2) from the analytic and numer-
ical solutions. The shock velocities were found to
be independent of the initial pressure ratio. From
the numerical solution, Vgy = 12.3 kms~! and Vgp
= 16.88 km s~!, while from the analytic solution
we obtain Vg ~ Vgr ~ 187 km s~! (Paper
I). For most of the flow variables we find a good
agreement between the values predicted by the nu-
merical and analytic solutions. However, we find

1N T T L T3 pEH T IR R T T T ]
15[ ISR i =
— B numerical —1 E B numerical ]
N 4 ul3
— A analytic n -1 I A analytic n ]
10 — ™ 1 FE AN —
E |- 4 n A 2 §
=} - | | ]
b ~E m A 1 ¢
9 5 : n A A 4 F a = n 9
° Im A & Hr —! =
(o R NI I 11 1 1 | | I L1 1 1 I—. 1 | ' I |J L1 ‘ L 111190
T Tl T T 11 1T 1T IR L L T
T | T LR
B ~1 [ o 16
L A 4 [ma 2 - —
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4 TAN n =
T [ 4 »n = - " 0 =
5] 2 | n 1 — -
:z% M numerical -1 Wrnumerical —| 2
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oo v b by B R b by by Ho
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o L1 | I l Lo | { | L | |1 Fig. 8. Comparison of the values predicted by the ana-
5 10 15 20 lytic and numerical solutions for several pressure ra-
o d tios (P;-’ /Pe) (a: length, b: width, c: opening angle, d:
Pj /Pe incident shock angle, ¢: reflected shock angle).
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that for the distance from the point of injection
to the point of reflection, a (see Figures 1 and 2),

the values obtained from the numerical solution -

are approximately twice those obtained from the
analytic solution. It can also be noted that, given
the values obtained for ¢y and ¢ the ratio ¢1/dp
differs noticeably between the analytic and the nu-
merical solutions. The following section describes
improvements to the analytic solution that partially
eliminate these differences between the analytic and
numerical results.

3. THE CORRECTED ANALYTIC SOLUTION

In this section, three of the assumptions which
were initially made in the analytic solution are
relaxed in order to obtain more accurate results.

The analytic solution described in Paper I (and
briefly in § 2) is derived under the assumption that
the initial jet radius is zero. A better approximation
is achieved supposing a non-zero initial radius for
the flow.

The approximation of a negligible initial ra-
dius for the jet can straightforwardly be removed.
Changing none of the previous assumptions about
the flow, but displacing the origin of coordinates in
the positive direction of the x-axis (into the flow, see
Figure 1), at z = 0 the jet will now have a non-zero
radius (r;). The (normalized) distance that the ori-

gin must be displaced is determined by the initial
radius desired, and the opening angle of the flow
() as follows:

r?

=3
Az = R, tana '’ (10)

where a is the opening angle which results from the
lateral (Prandtl-Meyer) expansion of the jet gas (see
equation (4)). The expression for R, given in the
previous section is used, taking the mass flux M; at
the distance Az to be:

— Ccos &

M; = 2xp%V) Az’ ! an)

cosa
The resulting displacement is:

,5'7/('7-1) (COS a)1/2
(2-¢)'? M? J (12)

=

which implies a new characteristic length a' of the
form:

d=a-Azx . (13)
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Another assumption used to derive the analytic
solution of Paper I is that the centrifugal pressure
P, (which appears in a gas flowing along a curved
trajectory) is much smaller than the jet’s ram
pressure Ppqp, (normal to the shock) and the ex-
ternal medium’s thermal pressure Pz, and can
thus be ignored. Very near the point where the
shock front is reflected, we find that this is not true,
so that this centrifugal pressure must be included
in the pressure balance equation which is used
to calculate the locus of the incident shock. The
complete form of the pressure balance equation (1)
is now used, and (unlike the previous P, = 0 case)
the solution to this equation is a complex integro-
differential equation for the locus of the incident
shock r(6) :

e (7) 7

41 r2 4o\ 1
er\ (r24¢2)3/2 ) rcost

0 o
‘/; W cosf df = 1, (14)

where r is the radius in units of r, (the radius at
which the jet pressure equals the ambient pressure)
and r' is the derivative of the radius with respect
to 6. The solution of this equation (which has been
described in detail by Canté 1980) gives the shape
and size of the incident shock, from which a more
precise value for the length a can be obtained.

Both of these corrections can be combined to
calculate a new value for the length a. The values
obtained from the solution of equation 14 can then
be corrected for the effect of a non-zero initial
radius using equation 13, thus obtaining a value
of a which contains both of the corrections to the
analytic theory that have been described above.
These results are compared to the numerical values
in Figure 4. This plot shows that these corrections
to the analytic theory result in a good agreement
between the values of a predicted from the analytic
and numerical models.

We find that the assumption that the reflected
(second) shock is strong is probably the cause for
the difference between the analytic and numerical
@1/¢r ratios (see § 2 and Figures 3d and 3e).
Although for high P/ Peat values the incident shock
is indeed strong, this is not the case for the reflected
shock. We have removed this assumption, and
we now consider the full jump conditions (rather
than the strong shock limit) across the reflected
shock. Combining the equations for the normal and
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Fig. 4. Comparison of the value of a predicted by the cor-
rected analytic and the numerical solutions.

tangential velocity jumps across the first and second
shock, we obtain the following expressions:

tan B = {tan gy, (15)

tangp = g tan(¢r + 9r — B), (16)

where ¢; and ¢p are the angles that the incident
and reflected shocks form with the symmetry axis,
B is the angle between the shock front and the flow
direction just after the incident shock and & and
&R are the inverse of the compression factors across
each shock. Because the incident shock is strong,
&r = 1/4 (for v = 5/3). £r depends on the Mach
number of the flow and v as follows:

_ (1—1)M,2g+2

fR (1 T I)szz )

(17)

with the Mach number of the flow normal to the
shock:

_Y sin(¢7 + ¢, — B) (18)

M
R R

where cp, is the sound speed just before the reflected
shock:

-1)/2
°R=¢l(££)(p\)/ : 19)
r1

with ¢; the sound speed just behind the incident
shock. pgr/p; is the density change from the exit
of the incident shock to just before entering the
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reflected shock. The density rises simply because
the jet flow is directed towards the symmetry axis
by the incident shock, and the cross section of the
jetis reduced. This density jump is:

PR _ sin(¢1 +¢r — ) sindr 20)
P sin B sin g

Finally, p is a polytropic index such that, if the gas
is adiabatic, p = 5/3 and if it is isothermal, p =
1. Assuming that the angles are small, equations
15, 16 and 20 can be simplified and we obtain an
expression for the shock angle ratio as follows:

1 =E_(1_€R) . @1)

ér 3 3]

Assuming that the gas is monotonic and that
the flow is adiabatic, from equation 21 we obtain
that ¢;/ér = 1.06. If the flow is isothermal, we
obtain a ratio of ¢r/¢r = 2. Figure 5 shows these
analytic results plotted as a function of the pressure
ratio PJ? / Pezt for both the adiabatic and isothermal

limits. Also plotted are the values measured from
the numerical solution. We find that the adiabatic
and isothermal values of ¢1/¢p bracket the results
obtained from the numerical models. This is con-
sistent with the fact that our numerical models are
nonadiabatic (see § 2).
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Fig. 5. Shock angle ratio (¢7/@R) versus initial pressure
ratio (PJ? /Pezt). The points are the values measured
from the non-adiabatic numerical model. The lines are
the values calculated with the corrected analytic solution
(the isothermal and adiabatic limits are shown).

4. DISCUSSION

A comparison has been made between the ana-
lytic and numerical solutions of a steady jet model.
The values predicted from these two solutions for
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the variables b, &, ¢1, R, Vs1 and Vgg (for the flow
in the first crossing shock pair) show a reasonably
good agreement. We find that the shock velocity
is approximately the same for both the incident
and the reflected shocks, and the value obtained
(Vs ~ 15 km s71) is similar for both solutions.
Such low shock velocities appear to be in qualitative
agreement with observations of stellar jets, which
show very low excitation emission line spectra (see,
e.g., Raga et al. 1990q).

The values of the characteristic length a of the
first crossing shock cell and the ratio ¢1 /¢ between
the angles of the incident and reflected shocks
predicted by the original analytic theory of Paper I
do not agree well with the values obtained from the
numerical model. Because of this disagreement, we
have derived a revised analytic solution.

In particular, we have removed the assumption
of a negligible initial jet radius, and we have in-
cluded a centrifugal pressure term in our equation
(which had been neglected in Paper I). We also have
considered the full jump conditions for the reflected
shock (in the original analytic solution it had been
assumed that the reflected shock is strong). A new
analytic value is then obtained for a, which com-
pares quite well with the numerical value. Analytic
limits are obtained for the ratio ¢7/¢g for the adia-
batic and isothermal cases, and it is found that the
numerical predictions for a non-adiabatic flow fall
between these values of the ¢y /¢ g ratio.

Therefore, we now have a coherent analytic and
numerical model for the formation of steady cros-
sing shocks in stellar jets. The general predictions of
this model are that the jet will present oblique (41 ~
5° and ¢p ~ 2°) internal crossing shocks with low

shock velocities (Vg ~ 15 km s™1). The mechanism
for the formation of these shocks, as well as analytic
and numerical predictions of the observable param-
eters (e.g., the shock velocities and the lengths of the
crossing shock cells) now appear to be well under-
stood and on a firm theoretical footing.
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