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RESUMEN

Hemos estudiado analiticamente un modelo muy simple de la distribucién- de
masa en galaxias planas, el cual consiste en un esferoide aplanado y un bulbo esférico,
siendo ambos componentes inhomogéneos. Se muestran ajustes directos de las curvas
de rotacién derivados analiticamente con algunos tipos de curvas de rotacién obtenidos
observacionalmente. Hemos hecho una comparacién con la solucién de disco maximo sin

un halo obtenido por Kent (1986).

ABSTRACT

We study analytically a very simple model of mass distribution in flat galaxies,
consisting of a flattened spheroid and a spherical bulge, both components being
inhomogeneous. We show direct fits of the analytically derived rotation curves with
some types of observationally obtained rotation curves. A comparison is made with the
maximum-disk solution without a halo obtained by Kent (1986).
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1. INTRODUCTION

A usual procedure to construct galactic models
consists in proposing specific mass density functions
for each possible component (disk, bulge, halo), and
with these functions obtaining the contribution of
each component by means of numerical fits to the
observed rotation curve.These fits give the values of
the parameters appearing in the density functions.

It is of practical and theoretical interest to make
use of analytic procedures to carry out the fits,
because in this way the analytic relations between
the parameters and the intrinsic properties of a
rotation curve (position of the maxima and minima,
velocity of rotation at these points, etc.) give a clear
idea of how the mass is allotted; thus it is possible
to sort out all the different kinds of rotation curves
arising from the proposed mass distribution model.

The analytical treatment is possible if we smooth
out the complexity of the density functions, while
staying within the representative set of functions for
a galactic system. . :

- In this work we consider this analytic proce-
dure in a flattened galaxy consisting of two inho-
mogeneous components: a plane spheroid and a
spherical bulge. Some fits are made on several ob-
served rotation curves using data of Rubin et al.

(1985), and the best fits are compared with the

maximum-disk solution without a halo discussed by
Kent (1986).

2. PROPERTIES OF THE MASS DISTRIBUTION

As a first approximation we propose two compo-
nents to represent the mass distribution in plane
galaxies: (1) a Schmidt-type (1965), high-eccentricity
inhomogeneous oblate spheroid (called the disk)
with similar strata, and with density law

pp(a) = ga™! + pa
where a is the length of the major semi-axis of any
similar spheroidal surface within the distribution;
(2) an inhomogeneous spherical bulge at the center
of the system, with density law
pB(a) =r + sa.

Both densities are decreasing functions of a; the
parameters p, ¢, r, s are to be obtained analytically
from the overall properties of this mass distribution
and from the characteristics of an observed rotation
curve.

The spatial extensions of both components are
constrained with the requirement that pp and pg be
positive. In particular at the boundary of the bulge
pB = 0; then introducing the radius of the bulge,
Rp, the number of independent parameters to be
determined still remains four.

111

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



1993RWKAA. . 25. . 111M

112 MORENO & PISMIS

Using potential theory one easily obtains the
analytical expression for the circular rotation on the
plane of symmetry of the mass distribution. With
this expression we find the position of the maxima
and minima and the scaled rotation velocity reached
at these points. It turns out that within the bulge
there is a maximum, at a position we shall call Ry,
and outside this bulge, butstill within the disk, there
are two extreme points: a minimum at a position
designated R; and a maximun at Ry (B; < Rp).

For an observed rotation curve showing the
above-mentioned characteristics, we enter the val-
ues of the four quantities Ry, Ry, Rz, and the rota-

tion at Ry, O(Ryp), to obtain the four independent

parameters of our model.

With some manipulation of all the equations at
hand we obtain the expressions of the four param-
eters, and then the expression for the rotation in

terms of R, Ry, Rz and 6(Rp), which is needed to

obtain a fit.
Let

Ro/RB,al = Ry/Ry,az = Rz/Ry,

and

= O(R)/6(Ro).

Also the following constant is important in the
discussion:

2 a + a
0=—[2+L——23] . 1)
3 p3alad |’

‘Then with 7 = R/Rgp and 7p RD/Ro (the
boundary of the disk, with no constraint at the
start other than p(rp) > 0) we obtain the following
expressions for the quadratic scaled circular rota-
tion at a position 7:

r < 1/p:
€¥(r) = C[l—-—C—2r+
(9. @
I/p <7< 71p
&(r) = —%[1—20
< + %(4+C'— 6u)r? —51—21;3] -

To use these equations we must first find the
value of u. This is obtained from the solution of a
quartic equation; the steps are the following:
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4

2
p=50+5).

With the value of g we obtain the radius of the
bulge, Rp, and the constant C in equation (1). The
mass of the bulge (in units where the gravitational
constant is equal to one) will be given by:

2
Mg = —RozéRO) : (4)

Up to this point the expressions are independent
of the disk’s eccentricity, e; i.e., a given rotation
curve may arise from different mass distributions.

For a fixed eccentricity the posmon at which pp =
0is glven by

. : ‘ 3E 1/2
(rp), = [F;(a"{ +a§)] )
with . '
2 - (2+e)V1 - e?
Se ’

Eé;—-c(l—VI—cz).

E, =

The boundary of the disk,rp = Rp/Rp, must
be such that rp < (rp)r. The mass of the disk is
obtained as follows

Mp = 2B D [2[(70)1']2 - ‘] ®

12 E; a% a% D
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3. APPLICATIONS OF THE MODEL

In Figure 1 we show some fits on twelve of sev-
eral observed rotation curves of flattened galaxies
obtained by Rubin et al. (1985). Table 1 shows
the values of Ry, O(Rp), ai, a2 used in these fits.
When a3 = 1 the minimum at R; coincides with the
maximum at Ry (in this case Rg = Rpg, i.e., p = 1),
giving rise to an inflection point in the rotation
curve.

Table 1 also lists the radius, Rg, and mass, Mp,
of the spherical bulge. As to the disk, we can
estimate the eccentricity e of the spheroid with
similar strata representing this disk for a constant
mass-luminosity ratio, and using the inclination ¢ at
which the system is observed (see Rubin et al. 1985
for references giving 1) and the isophotal ellipticity
€ (measured by Kent 1986).

The equation relating these quantities is

Vel2-¢€ . "

¢ sint 470 @)

Using this equation we obtain e > 1 for some

galaxies in Table 1; this means that there are

inconsistencies and/or errors in the values 1, € and

the assumption of similarity of the mass distribution
of the disk.

-galaxies in Table 1.
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We have taken e = /1 —(0.1)2 to re-calculate
the inclination ¢, the quantity supposedly with the
largest error, and have obtained values close to the
ones given in the references (Rubin et al. 1985):
a mean of 3.3 degrees in the difference for the
With the above-mentioned
value of e we obtain the limiting radius and mass of
the disk, (Rp)r, (Mp)L (see eqs. (5) and (6)) listed
in Table 1.

4. DISCUSSION AND CONCLUSIONS

Figure 1 shows that with the proposed simple
model good fits can be obtained in a number of
cases and this is easily done using the analytical
expressions emerging from the model. In partic-
ular we have applied this procedure in the study of

- the central region of NGC 4736 (Pismis & Moreno,

1993a,b).

Of course, this simple model is not well suited
for every observed rotation curve; at present
we are carrying out the analytical study of a
model consisting of three components: bulge, disk,
and halo, and expect to be able to handle some
complicated rotation curves given by Rubin et al.
(1985).

Kent (1986) has analyzed some rotation curves
of Rubin et al. (1985), based on photometry. A
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Fig. 1a. Some fits with our model (continuous line) of observational rotation data obtained by Rubin et al. (1985).
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Fig. 1b. Same as Figure la.
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Fig. lc. Same as Figure la.
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TABLE 1

SOME PROPERTIES OF OUR FITS

Ry  ©(Ro) R (Rp)L Mp  (MD)L Ropt (Mp)opt (MT)opt (MT)hy
Dbject  (kpe) (kms~l) a3 @z (kpo) (kpe) (1010 Mg) (101! M) (kpe) (10! Mp)(10!! M) (10! Mg)
NGC1421 3 170 2 8 324 3418  1.629 1.545 247 1.192  1.355 1.27
NGC1620 5 180 1 5 500 3523 1854 2633 309 2492 2677 2.64
NGC2590 5 200 1 4 500 92848 2273 2155 326 2155 2382 2.58
NGC2608 1 125 3 15 110 21.14 0339 0481 141 0333 0367 0.22
NGC2998 5 200 2 8 540 5697 3759 3565 394 2595 2970 1.93
NGC4800 1 145 1 4 100 57 0239 0226 80 022  0.245 0.20
NGC7171 6 200 1 2 600 1854 2570 0843 196 0.843  1.100 1.47
NGC7217 2 280 175 35 213 1081 2637 0865 137 0865  1.129 1.57
NGC7537 4 145 175 35 425 2163 1414 0464 195 0448  0.589 0.44
NGC7541 1 175 25 175 1.0 2443  0.633 1.695 283 1.695  1.758 1.66
NGC7606 10 270 2 25 10.65 4424 12.293 2712 40.1 2626  3.855 3.61
UGC2885 4 300 3 15 441 8454  7.814 11.093 904 11.093  11.874 9.81

possibility he considers is that the luminous matter
lominates the system, the observed luminosity
oeing associated with a bulge and a disk, where
the bulge is of finite extent. To obtain the rotation
curve one first needs to deproject the observed
brightness to obtain the mass densities of both
components, which are in general complicated
functions of position. This model of Kent, called
the maximum-disk solution, is similar to the one
proposed here as to the number of components and
the shape and finite extension of the bulge; it is
therefore of interest a comparison of both models.
Kent shows in his Figure 2 some fits to observed
rotation curves, using the maximum-disk solution.
[n particular for the galaxies listed in Table 1, his fits
are somewhat similar to the fits in Figure 1 shown
in this paper.

The last two columns in Table 1 present a
comparison of the integrated total mass up to a

distance of Ropt.(MT)opt is for our model, and
(Mr)g,t corresponds to the maximum-disk solution

of Kent. As far as this integrated total mass is
concerned, we can see that our model gives a
good approximation to the more elaborate model
of Kent, giving at the same time a good fit to the
rotation curve.
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