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RESUMEN

En este articulo, estudiamos la evolucién no lineal de inhomogeneidades cos-
moldgicas unidimensionales sin presién. Con el fin de resolver las ecuaciones en derivadas
parciales que gobiernan esta evolucién, hemos usado un algoritmo de captura de choques de
alta resolucién. Las condiciones iniciales se han tomado en el régimen lineal. El anilisis se ha
detenido en las proximidades de la formacién de cdusticas. Nuestro cédigo hidrodindmico
ha generado satisfactoriamente la solucién de Zel’dovich. Posibles mejoras y extensiones
del trabajo son discutidas.

ABSTRACT

In this paper, we study the nonlinear evolution of one dimensional pressureless
cosmological inhomogeneities. A high-resolution shock-capturing algorithm has been used
in order to solve the partial differential equations governing this evolution numerically.
Linear initial conditions have been considered. The analysis covers the epoch up to caustic
formation. Our hydro-code has been tested in order to reproduce the Zel'dovich solution.
Improvements and further extensions of this work are discussed.
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1. INTRODUCTION

One of the main goals of Modern Cosmology
is to explain structure formation in the Universe.
It seems that such structure did grow from small
amplitude primordial density fluctuations of the
energy. These fluctuations would have arisen at
the remote past and they would have grown due
to gravitational instability. Although their origin
has not been established definitely, it could be re-
lated to quantum fluctuations of the inflationary
field (Kofman & Linde 1987). Such quantum fluctu-
ations would have produced an initial Gaussian
distribution (Bardeen, Steinhardt, & Turner 1983)
of scalar adiabatic fluctuations, with a scale invariant
spectrum.

Since the primordial fluctuations were originated
with a small initial energy density contrast §; < 1,
their evolution can be studied by using pertur-
bative methods (Brandenberger 1985; Mukhanov,
Feldman, & Brandenberger 1992); in particular, the
gauge invariant perturbation methods proposed by
Bardeen (1980) and Ellis & Bruni (1989) deserve
special attention. These methods give a good de-
scription of structure evolution up to the point
where the density contrast § becomes of the or-
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der of unity; then, a new epoch starts and is
called “the mildly nonlinear regime”. The study of this
period requires non perturbative methods. Most
extensively used is the one based on a solution of
the Newtonian equations describing the gravitation-
al evolution of a pressureless fluid; this is the cele-
brated Zel'dovich approximation (Zel'dovich 1970).
This solution is exact (Doroshkevich, Ryaben’kii,
& Shandarin 1973; Shandarin & Zel'dovich 1989)
in the one dimensional (1D) case. The three di-
mensional extension (3D) is only an approximation.
Some authors have improved this 3D approxima-
tion (see Bertschinger 1991, and references the-
rein). Other authors have found new 3D nume-
rical solutions (Matarrese, Pantano, & Siez 1993).
Unfortunately, the above methods and solutions are
only valid up to caustic formation. The contrast §
tends to infinity, in a finite time ¢, in the caustics,
its value being about unity outside them. The very
steep gradients developed near caustics, in times
close to t., suggest the use of Godunov type methods
(Godunov 1959), which were designed for treating
more problematic situations with discontinuities.
In the case of a pressureless fluid, which evolves under
the action of purely gravitational forces, from general
cosmological mitial conditions, caustic formation is
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unavoidable. In order to prevent these divergencies

and to be able to go beyond the mildly nonlinear

regime, towards the strongly nonlinear regime, which
dominates inside structures such as galaxy clusters,
only two alternatives are ‘possible: either matter is
not described as a fluid, or non gravitational forces
must be introduced. These alternatives have moti-
vated several approaches and numerical techniques
which can be classified in two types, basically: P
(particle) and F (fluid).

In the P approach, matter is not a fluid, but a
discrete system of particles, and forces are purely

gravitational. The popular N-body simulations, in

which a set of N particles defines a self-gravitating
system, belong to this type of approaches.

In the F approach, matter is a fluid, but nongravi-
tational forces prevent the shell crossing, which is
responsible for caustic formation. Among the var-
ious models within the F approaches, the so-called
Adhesion model (Gurbatov, Saichev, & Shandarin
1989) stands out: a numerical artificial viscosity
prevents caustic formation. These techniques have
been applied to several physical problems. Von
Neumann & Richtmyer (1950) were the first to
use them in hydrodynamics. Models which make
use of artificial viscosity have been successful in the
treatment of shocks and discontinuities, although

as Noh (1987) showed, they can be a source of .

intrinsic errors and, as Noh suggested, they can be
improved at the cost of more experimentation on
the free parameters. Another F approach is the
“Frozen flow model” recently proposed by Matarrese
et al. (1992), in which the particle velocities in
the nonlinear regime are identified with the linear
oneés. These velocities could only be produced
by fictitious nongravitational forces, wlnch prevent
caustic formation.

The present work is part of a research pTOJeCt
in which we try to build upa numerical code
describing the matter as a fluid with pressure.
Pressure gradients would be the forces preventing
caustic formation. Pressure could produce shocks
and smoothing of gradients (preventing or delaying
divergencies of §). This smoothing could facilitate
the application of any numerical method, and the
possible presence of shocks strongly suggests the use
of techniques such as’ Godunov-type methods, which
were especially prepared to study the evolution
of these discontinuities. Due to these reasons,
the partial differential equations which describe
the evolution of the fluid (Peebles 1980) would
be numerically solved using Godunov type techniques
(Godunov 1959) or more prec1sely modern high-
resolution shock-capturing methods.

Although pressure would play an important role
in the code we are trying to elaborate in this paper,
we are going to assume that pressure is zero. There
are two main reasons for this assumption: (1) The

Zel'dovich 1D exact solution can be used as a test, (2)
the application of Godunov-type methods is more
involved for vanishing pressure (divergencies of §)
and, consequently, ifany of these methods work well

“in the pressureless case P = 0, it should not fail for

P # 0 (in spite of the possible presence of shocks).

Godunov-type methods have undergone an im-
portant development in the eighties. They have
been applied in problems of Computational Fluid
Dynamics (aerodynamics, etc.) and in Astrophysics
(see, for example Fryxell, Miiller, & Arnett 1990).
These methods have been extended to relativistic
hydrodynamics by the Valencia group (Marti et al.
'1990; Marti, Ibafiez, & Miralles 1990; Marti 1991;
Font et al. 1993). Their main features are: ¢) They
are highly accurate in the smooth regions of the
flow, and i) they give high resolution in the re-
gions of discontinuities, avoiding the use of artifi-
cial viscosity. The original Godunov method (1959)
is first order accurate (see § 2.3). This method
was used by Doroshkevich & Shandarin (1973) to
study nonlinear disk-shaped concentrations of mat-
ter (development of the pancake theory). In this pa-
per, we use a second order accurate modern high-
resolution shock-capturing algorithm (see § 2.3).

In the case of a pressureless fluid, there are
no nongravitational forces able to avoid caustic
formation; hence, regions with large values of § and
their gradients will appear. In these regions, the
evolution equations have been integrated up to the
point at which large values of § are very high, thanks
to the special features of Godunov-type methods
combined with rezoning techniques.

Henceforth, t is the cosmologlcal time, tg is the
age of the universe, a(t) is the scale factor of a

flat Friedman-Robertson-Walker background. X
stands for the derivative of function X with respect
to the cosmological time. The present value H(tg)
of the function H = a/a is the Hubble constant;
its value in units of 100 km s™! Mpc~! is h. pg
is the background density, p is the density of the
cosmological fluid, § = (p — pg)/pp is the density
contrast and, finally, ¢ is the speed of light. -

This paper is structured as follows: in § 2, a
brief description of the Godunov-type methods is
shown, and a numerical code designed to study the
evolution of 1D inhomogeneities is presented. In
§ 3 some exact solutions are described. The numer-
ical code is.tested in § 4, where the exact solutions
are numerically recovered. The main conclusions
and our projects are presented in § 5.

2. GODUNOV-TYPE METHODS

~ 2.1. Definitions

A system of equatlons is called a hyperbolw system of
conservation laws in the sense of Lax (1973) —in one
dimension— if it. can be written in the form:
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du 09f(u)
5t T oz ) (1)
where u is the N-dimensional vector of unknowns
and f(u) is a vector of functions of dimension N;
these functions are called fluxes. The above system
is called strictly hyperbolic if the Jacobian of the matrix

_ af(n)
A= du

has N eigenvalues Aq(a = 1,...N) real and different,
and the set of eigenvectors is complete in ®V.

For the sake of simplicity let us consider the scalar
case (N = 1), Itis known as a Riemann problem,
the initial value problem for the system (1) with the
discontinuous data:

_Jur i x <Xy,
.u(z,O)—{“R if X > Xdis

where up and uj, are, respectively, the values of u
at the right and at the left side of the discontinuity
(Zdis)-

Since the initial conditions are discontinuous, we
are concerned with weak solutions, i. e., solutions in
the sense of the distribution theory; in general, the
weak solution of a Riemann problem is not unique.
For scalar equations, it has been proved (Oleinik
1963; Lax 1973) that a weak solution is the relevant
physical one if the following conditions are satisfied:
the Rankine-Hugoniot relations

f(ugr) = f(ur) = s(up —ur) , ©3)

and the entropy conditions

flu) = f(ug) >e> f(u)

= f(uR) . 3)
u—ug u—up !

where s is the propagation speed of the disconti-
nuity (Marti 1991). A numerical method must be
designed in such a way that it generates the physi-
cally relevant weak solution. The discontinuities are
classified in shocks, if the above inequalities are strict,
and contact discontinuities if the equalities hold identi-

~ cally.

The extension to systems of equations of a high-
resolution shock-capturing scheme is carried out, in
a natural way, by using the local characteristic approach
(see, i.e., Marti 1991, and references therein).

2.2. The Evolution Equations of Cosmological
Inhomogeneities in Conservative Form

We are going to show that the evolution equa-
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tions of cosmological inhomogeneities can be writ-
ten in the form:

R @

that is, as a one dimensional hyperbolic system of
conservation laws with sources s(u). The treatment
of the sources requires specific techniques, which
depend on the desired accuracy and the complexity
of these terms. In our case, they are included in the
temporal advance algorithm [see next subsection,

equation (18)].

The evolution equatmns for a cosmologlcal in-
homogeneity evolving in a Robertson-Walker back-
ground, in the absence of pressure, and under the
action of purely gravitational forces, are the fol-
lowing (Peebles 1980):

a5 1
= 5
FTd V (1+é8)v=0 , (%)
v - . 1
T + - (v V)v+Hv—.—;V¢ , (6)
and
2, _ 352 2
Vi = EH a‘s ; (7)
where Z, ¥ = a(t) dZ/dt and §(t, Z) are, respectively,

the Eulerian coordinates, the peculiar velocity and
the peculiar Newtonian gravitational potential.

The Newtonian description given by equations
(5)~(7) can suffice, instead of a relativistic one
(Peebles 1980), if a set of conditions are satisfied.
We can distinguish two cases: a) the background
is flat (as in this paper); in this case the use of
equauons (5)-(7) demands that the peculiar veloc-
ities be lower than the speed of light (v < ¢),
and b) the background is either open or closed;
now, in addition to the above restriction on the
velocities, the inhomogeneity size must be smaller
than the causal horizon size (negligible background
curvature). Condition b) would be also nécessaryin
the flat case, if one considers that the total velocities
(not the peculiar ones) must be lower than e.

In all our applications we have verified that
the above conditions about velocities and sizes are
satisfied. Finally, very close to the caustics, § di-
verges and, consequently, it reaches arbitrarily large
values as the time becomes close enough to t..
Hence, the use of General Relativity would become
necessary; however, in our calculations, § takes

values around 103, which implies p ~ 10726 gr
m=3.



1993RMWKAA. . 25..117Q

120 QUILIS, IBANEZ, & SAEZ

In 1D cases, equations (5) and (6) can be easily
written as follows:

2l +ni=0 ®)

and

dv 9 v? 19¢
=T _ . 9
3t + az[2a adzx va ©)

These equations have the form (4) if the following
variables, fluxes, and sources are defined as:

u=[6v] , " (10)
oo cu(6+1) 02 |
f(u)=[—— 3] > an
and
s(u) = [0, ————¢ Hv . (12)

Furthermore, the 1D version of Poisson’s equation
is:

2,25 13
81: 8z¢] H a?s . (13)
Equations (8) and (9) are not a strictly hyperbol-
ic system because the eigenvalues of the matrix
A = 09f(u)/du are not distinct; however, each of
these equations is a scalar hyperbolic equation. In
the absence of source terms, equation (9) is the well-
known Burgers cquatlon The source terms couple
both scalar equations. In practice, we have pro-
ceeded as follows: first, equation (9) has been solved
in order to compute v and, afterwards, v has been
used as input in equation (8) to compute §.
~ Poisson’s equation (13) is elliptic. It has been only
used to compute the source term d¢/dz which ap-
pears in equation (9). At each instant, equation (13)
is integrated as a first order ordinary differential
equation in the variable 3¢ /9z.

2.3. Some Details about our Code

In this paper we have used a modern high-resolution
shock-capturing method which is, nowadays, one
of the generalizations of the original Godunov’s
idea. More precisely, we have applied a version
of the MUSCL:s algorithm (Monotonic Upstream
Schemes for Conservation Laws), derived by Van
Leer (1979), together with other ingredients —
approximate Riemann’s solver, semiadapted spatial
grid, a specific time step,...— that we are going to

describe in a summarized way. The details can be
found in Marti (1991) and references cited therein.

The main components of our MUSCL algorithm
are the following:

1. At each time step ¢ = t", the data u}} are the
cell-averaged of the variables u(z,t)

Z5 /
u} = _1_/ ™ 2u(x,t.")dx ; (14)

where j - 1/2 and 5 + 1/2 stand for the lower and
upper (or left and right) interfaces, respectively, of
the numerical cell . These cell-average quantities
are evolved in time (see below).

2. Reconstruction procedure from the cell-averaged
quantities u7. ‘With this aim we have carried out a
linear reconstruction which preserves monotonicity.
In particular, we have made use of the minmod
function as a slope limiter. The minmod function
chooses the lower slope from the other two defined
by quantities u7_; and u} on one side, and u7 and

u},, on the other side. Hence, at each time level
there exists a couplmg among three consecutive
cells, 7 -1, 5,7 + 1 allowing to establish the
correspondmg Riemann problems at the mterﬁaces

- 1/2and 5 + 1/2, respectively.

3. Computatmn of the numerical fluxes at interfa-
ces. Component i*? of the numerical flux is calcu-
lated accordmg to Roe’s prescription (Roe 1981):

i (o i
19y 390t 1008

2 I3
3 || Aaaﬁﬁ:’) .. 15)

‘Where L and R stand for the states to the left and
right of a given interface (5 + 1) A and R( ) (a
= 1,2) are, respectively, the elgenvalues (that is, the
characteristic velocities) and the ** component of the
a-right eigenvector) of the Jacobian matrix:

(@)
Asry "( du )u-(u‘ N 09

And quantities Ay —the jumps in the local
characteristic variables through each interface— are
obtained from the following relation

2 3
) = >y AGLRY 17)
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Z\‘.,, ﬁt(: ) and A@,, as functions of u, are calculated
at each interface and, thus, they depend on the
particular values uy, and ug.

4. Advancing in time. Once the numerical fluxes,

£, are known (they carry the complete information
of the system) the evolution of quantities u; are
governed by

du;(t) _ K
dt Az

+85 . (18)

The above equation can be solved by standard
ordinary differential equation solvers. Our MUSCL
version uses a “predictor-corrector” method with an
appropriate time step (see below). '

It can be shown that the “minmod” reconstruc-
tion, Roe’s prescription for evaluating the numer-
ical fluxes, and the “predictor-corrector” method
for solving (18), set out a global second order ac-
curate algorithm.

To end this section, let us notice some features of
our computational grid. We have said that our algo-
rithm is second order accurate globally, i.e., the lo-
cal error of truncation is of order O[(Az)*]+ O[(At)?).
Refining the grid accelerates the convergence. The
choice of the time step is crucial for the stability of
the scheme. ‘

In the neighborhood of the caustics, we have
proceeded to refine the spatial grid in order to get
an adequate resolution.

The time step used for solving equation (18) has
a value which varies according to some criteria.
When the inhomogeneity evolves and enters into
the very fast nonlinear regime, the time step mustbe
lower than the one corresponding to the slow linear
regime. In order to keep into account this feature,
we have implemented the following criterion: first,
we estimate the time step between time levels t"
and "+l Agntl/2) according to Antl/2 = t"/103.
Second, we evaluate the relative variation

=3 i (19)

If Au; satisfies the condition Au; < 1072 for
all numerical cells and all components of wu, then,
the estimated time step, At"t1/2, is accepted.
Otherwise, this time step is divided by a factor of
two and the process is repeated until the tolerance
is fulfilled. By construction, this procedure takes
into account the rapid variations of variables § and
v in the nonlinear regime. We have verified that
Atnt1/2 s always lower than the so-called Courant
time in order to guarantee the stability of the scheme
(Courant, Friedrichs, & Lewy 1928).
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3. THE ZELDOVICH SOLUTION

In the 1D case, Zel'dovich solution satisfies ex-
actly the system (5)-(7). - A brief description of
this solution is now presented. Its applications are
studied in the next section.

In order to get the Zel'dovich 1D solution, it
is assumed that the flow is potential, it means that
the velocity dz/da derives from a velocity potential

éz (q);

d
& = Vatsla) - (20)

Where ¢ is the Lagrangian coordinate which coin-
cides with the Eulerian coordinate z at the initial
time ¢;. A simple integration of equation (20) leads
to the following relation:

z= g [a(t) - a(t;)|Veda(a) - @1)

Zel'dovich solution can be easily derived by
substituting condition (20) into the system (5)-(7).
This solution is completely defined by the function
#2(g), its explicit form is now presented for the
velocity potential

$z(q) = —Acos(kqg) , (22)

A and k being free parameters. k defines the spatial
size of the perturbation and A its amplitude.
The peculiar Zel'dovich velocity is

v(z,t) = —a(t)a(t) Ak sin(kq) , (23)

and the gravitational peculiar potential (Dorosh-
kevich, Ryaben’kii, & Shandarin 1973) is

(z—4q)?

M@ ey P

#o(z,t) = -5 0d?[$s(q) +

where the second term inside the bracket tends to
zero as the time tends to its initial value ¢;. Puttin,
this potential into equation (7), the function §(z,¢
is easily obtained; in particular, the initial profile of
the density contrast §; = §(z, ¢;) is found.
Additionally, introducing the peculiar velocity
(23) into’equation (5), and integrating the resulting
equation, the following relation is formally found

§(z,t;) +1 _
1 - (a(t) — a(t;)) Ak? cos(kq)

5(z,t) = 1, (25)

in which, the initial § profile is not free (see above).
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Atz = 0(g = 0), the contrast (25) diverges at the
timeyt»c, which satisfies the following equation:

a(te) —a(t;) = A7k72 . (26)

Zel'dovich solution coincides with the linear one
for small values of §; hence, in the linear regime,
the initial profile, §;, corresponding to the velocity
potential (22) is §; = Ak? cos(kg). Out of the linear
regime, §; has to be computed by using equations
(7) and (24), as it has been explained above.

To end this section, let-us present several consid-
erations, which are important in order to describe
the second test of the next section. If the initial
arbitrary contrast §; evolves according to the veloc-
ity field (23), the resulting contrast § (z,t) is given
by equation (25). In order to prove it, just sub-
stitute (23) into the continuity equation and check
that the resulting equation has solution (25). It is
worthwhile to point out that, for a free §;, equations
(23) and (25) define a solution of the continuity
equation, which does not coincide, in general, with
the Zel'dovich solution of the system (5)—(7) (which
corresponds to a well defined profile §;, as discussed
above). This means that, for a free §;, the velocities
(23) cannot be produced by the gravitational forces
created by the contrast (25); however, other forces
producing the velocities (23) would transform the
initial profile §; in agreement with (25).

4. GENERAL RESULTS AND DISCUSSION

In this section we show two cosmological tests
which our code has overcome: 1) Zel'dovich 1D so-
lution (§ 4.1). 2) Evolution of discontinuous initial
profile of density contrast (§ 4.2).

In both cases, the analytical solutions are com-
pared with the corresponding numerical ones. The
initial data, that is, the § and v profiles, are the ones

given by the analytical solution particularized at the - -

initial time ¢;.

In all figures displayed here we have used circles
for denoting the numerical values and continuous
lines for the exact solutions.

4.1. A Test Based on Zel'dovich 1D Solution

We have evolved initial data given at time ¢,
corresponding to a redshift z; = 50, at which, the
inhomogeneities evolve into the linear regime.

We have considered two different inhomogenei-
ties, called Z1 and Z2, corresponding to a Zel'dovich
potential of the form (22) (see §3). These inhomo-
geneities are characterized by parameters A and k.
Table 1 displays the values of these parameters as
well as the initial contrast §; and the time of caustic
formation t.. Inhomogeneity Z1 is larger than Z2
and, hence, Z2 reaches the nonlinear regime ear-
lier than Z1. Caustics appear, in the case of Z2 (Z1),
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TABLE 1

PARAMETERS FOR THE 1D ZELDOVICH
SOLUTION®

Case AMMpc™l) k 5t

Z1  91x107% 035 0001 5¢
72 9.1x107% 35 0001 0.2ty

¢ See text for details about entries.

before (after) present time t. < to(te > tp). Due
to the fact that the inhomogeneities are 1D and the
potentials have been chosen periodic, we can inter-
pret these structures as walls centered at the points
dn = 27n/k, with n integer. As time goes on, these
walls become increasingly narrower and denser. We
have shown, in our figures, only the wall centered
atg=z =0. ‘

Figure 1 shows the evolution of the Z1 inhomoge-
neity. The two upper curves correspond to the den-
sity contrast profile § (upper left) and the peculiar
velocity profile v (upper right) as functions of the
adimensional Eulerian coordinate z. The scale fac-.
tor is given in units of 21.96 h~! Mpc, and the dis-
tance to the inhomogeneity center, in units of h~1
Mpc, is d = za. These two profiles correspond to
the instant ¢/t = 0.964, being the maximum —in
space— of § ~ 40 and the maximum of v ~ 0.15c.
The couple of curves in the middle and the lower
parts of Figure 1 show the same quantities but at dif-
ferent times, t/t. = 0.992 and t/t, = 0.998, respec-
tively, being the corresponding extrema: maximum
of § ~ 200 (~ 800) and maximum of v ~ 0.125 (~
0.125) for the curves displayed at the middle. (lower)
part of Figure 1. The main conclusion from this fig-
ure is that our numerical results and the exact ones
agree —both for the contrast density and for the pe-
culiar velocity— with a relative error between 10~°
and 1074, with the exception of the central point
z = 0, where the difficulties associated with the ex-
istence of very steep gradients become more severe.
At t]}ls point the relative error is between 1072 and
107,

In order to treat numerically the evolution in
the strongly nonlinear regime, we have refined the
spatial grid in the neighborhood of z = 0. The
initial number of cells, 250, is kept fixed while § is
lower than ~ 10, otherwise a rezoning is carried out
in such a way that the final number of cells is 1290 -
when is § ~ 103. From the upper left curve we can
conclude that the thickness of the resulting wall a-
mounts to ~ 102 Mpc, being the diameter of the
horizon ~ 10* Mpc, at the time t ~ t, ~5tg. As it
can be seen from the upper right curve of Figure
1, peculiar velocities are always lower than 0.15c,
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s -0.10
-5 0 5-5 5
X

123

Fig. 1. Density contrast (left) and peculiar velocity (right) as functions of the adimensional Eulerian coordinate x for the
inhomogeneity Z1. Circles correspond to the numerical values and continuous line to the Zel'dovich solution. Time is
given in units of ¢ and the scale factor in units of 21.96 h-1 Mpc.
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Fig. 2. Same as Figure 1 for the inhomogeneity Z2.
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Fig. 3. Maximum value of the density contrast as a function of time (in units of t¢). The curve on the right (left)

correspond to inhomogeneity Z1 (Z2).

hence, we can conclude that the system is non-
relativistic and the Newtonian approach defined by
equations (5)-(7) might be sufficient (see § 3). The
same conclusions are found from the other curves
of Figure 1.

The evolution of inhomogeneity Z2 is described
in Figure 2. This figure is analogous to Figure 1,
and we will not comment on it. As in the case of Z1,
the inhomogeneity Z2 does not require a relativistic
treatment. But, unlike the Z1 case, Z2 requires a
more refined mesh. We have used 250 numerical
cells with § ~ 1 or lower, and the mesh has been
refined to a total of 5265 points in order to resolve
a density contrast of § ~ 3000. These grids allow to
overcome the numerical problems associated with
the huge spatial and temporal gradients developed
by inhomogeneity Z2, which correspond to a very
thin nonlinear wall.

Finally, Figure 3 shows the evolution of the
maximum —in space— of the density contrast §mqz.
The curve on the right of Figure 3 corresponds to
inhomogeneity Z1 and the one on the left to Z2. It
can be seen from it, according to the predictions
of Zel'dovich 1D solution, that §mar diverges as
time (in units of t;) tends to unity. The most
important feature of Figure 3 is the good agreement
between the numerical and exact solutions, in both
cases, and including the region where émqz rapidly
increases.

4.2. A Test Based on the Equation of Continuity

As we have discussed in section § 3, an arbi-
trary initial profile of the density contrast &(z),
evolving with the peculiar velocity given by equa-
tion (23), varies with time according to equation

(25). Equation (25) is an exact solution of the
continuity equation, which is to be compared with
the numerical solution corresponding to the same
initial values and the same peculiar velocities (23).

In all the cases considered in this subsection, the
initial redshift is z; = 500 and the constants of the
equation (23) take the values A = 1.45 X 1073 1
Mpc! and k = 9.8 x 1072, Caustic formation
appears, in all cases, at t, = 13to.

We have studied the evolution of the following
three different initial profiles §;: 1) Case Cl1: §; =1
if z €[-0.5,0.5] and §; = 0; 2) Case C2: §; = 4 if
z € [-0.25,0.25] and §; = 0; 3) Case C3: §; = 10 if
z € [-0.1,0.1] and §; = 0. These three “step-like”
discontinuous profiles have been chosen with the
only aim of checking the capacity of our numerical
code to treat discontinuous initial data. They do not
represent any real cosmological structure at all.

Figure 4 shows the density contrast profiles as
functions of z at the instant t ~ 0.15t.. The upper
left curve corresponds to Cl, the upper right one
corresponds to C2 and the lower one to C3. It
is obvious that the agreement between the exact
solution and the numerical one is excellent. That
gives us confidence on the feasibility of our code for
treating discontinuous initial data. The grid used in
the three cases has 480 points and it has not been
refined. A rezoning could be necessary at a late
epoch, in particular, close to the critical time.

5. CONCLUSIONS AND PERSPECTIVES

A numerical code based on the MUSCL algo-
rithm has been built up. Several severe tests have
been overcome by our code. This code com-
bines the following ingredients: a linear reconstruc-
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Fig. 4. Density contrast § as a function of the adimensional Eulerian coordinate x at the time ¢ / te ~ 0.15. Cases C1, C2
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tion, Roe’s prescription for evaluating the numer-
ical fluxes and a predictor-corrector method for ad-
vancing in time. Our code is globally second order
accurate. It has been applied to the study of how
one dimensional pressureless cosmological inhomo-
geneities evolve in time. This analysis has been ex-
tended from the linear regime to the very problem-
atic nonlinear regime. More precisely, our code de-
scribes correctly (§ 4.1) the § and v evolution in those
regions where very steep spatial gradients and very
fast temporal changes appear, that is, where caustics
begin to develop. Our code has proved to be able
to treat initial discontinuous density profiles, giving
excellent results (§ 4.2). Other numerical methods
fail in those cases in which our code has succeeded;
this is not surprising since our code is based on an al-

gorithm specifically designed for solving strong dis-
continuities. Numerical artifacts (artificial viscosity
or other unphysical forces), which are alien to the
real physical problem, are not used. The spatial
grid is not homogeneous; it has had to be refined
in the zones at the neighborhood of the caustic for-
mation. The time step is not constant and it has
been chosen in order to resolve the inhomogeneity
according to its rate of evolution, i.e., it decreases
when the evolution is faster.

The inhomogeneities have been described with
the set of equations (5)-(7) proposed by Peebles
(1980), and discussed in § 2.2. Its use is familiar
in N-body simulations and, in general, in studies
of structure formation inside big boxes having a

linear size of ~ 102 Mpc. In the 1D case, the
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equations to solve are hyperbolic scalar equations
of conservation laws coupled by the source terms.
These equations can be solved by using Godunov-
type methods. :

The goodness of our code depends, crucially, on
its generalization possibilities. The goal would be
to extend it to be able to evolve three dimensional
structures with pressure from general initial condi-
tions of cosmological character. Such code might,
eventually, be competitive with the familiar N-body
simulations given the fact that pressure could avoid
shell crossing, thus allowing the description of the
strongly nonlinear regime. Pressure would be in-
troduced as the most natural way of avoiding caus-
tic formation. Indeed, when density grows suf-
ficiently, the baryon component should be a source
of pressure which, eventually, could avoid density
divergencies.

A 3D extension of our code, including pressure,
is feasible theoretically. With pressure, the equa-
tions which generalize the system (5)-(7) are a hy-
perbolic system of conservation laws (with sources).
Modern high-resolution shock-capturing schemes
have been designed for solving this kind of systems.
Nevertheless, a lot of work would be necessary in
order to build up a fully 3D code and solve some
of the technical details: grid, computational costs,
memory capacity, visualization...

Nowadays we are working in a first step towards
the above goal. We will introduce the pressure in
the system (5)-(7). An equation of state is necessary
in order to close this system. In the near future
we are planning to study spherically symmetric
clusters with pressure —they are one dimensional
models— before attacking multidimensional prob-
lems. Results in 3D calculations with pressure could
be directly compared with observations of the large
scale structure of our Universe.
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DGICYT (grants PB91-0648 and PB90-0416). The
authors have enjoyed fruitful conversations with
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