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RESUMEN

Se estudian las oscilaciones termomecanicas de una cascara esférica radiante
que contiene gas. Con una razonable eleccién de los principales parametros se
encuentra que el periodo de oscilacién es similar al de las novas de rayos X.

ABSTRACT

Thermomechanical oscillations of a radiating spherically symmetric shell con-
taining a gas are studied. With a reasonable choice of the relevant parameters the
oscillation period is similar to that of X ray novae.
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1. INTRODUCTION

In this work we study a highly simplified model
of X-ray nova burster, with spherical symmetry, in-
troduced in previous work (Aquilano, Castagnino, &
Lara 1986,1987) in order to describe the luminosity
fluctuations of these astronomical objects.

The model consists on a central spherical nucleus,
a white dwarf star, sorrounded by gas, enclosed in a
spherical dust shell, in thermal equilibrium with the
gas. The shell blackbody radiation and the luminos-
ity fluctuations are caused by the oscillation of the
shell radius. Although this model is extremely sim-
ple, it predicts quite well the observational data of
X-ray novae (see Hoffman, Marshall, & Lewin 1978;
Lewin & Clark 1980).
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On the other hand we believe that the study of
this oscillating system has also a mathematical in-
terest, by itself. In fact, gravity forces, pressure and
radiation force induce the shell to oscillate, if the
relevant parameter lies between certain bounds (oth-
erwise the shell will collapse to the white dwarf or
will be ejected). We shall compute these bounds and
show that, in this problem, a primary bifurcation ex-
ists when we describe the solutions in terms of the
ratio of the shell mass and the gas mass.

2. THE CLASSICAL SOLUTION

To build our simplified model we shall consider
that the shell is in thermal equilibrium with the gas
which undergoes an adiabatic evolution, as we have
said. Besides, we shall suppose that the masses of
the shell and the gas are constant of the motion, and
that the gas density is uniform and equal to

p(R) = 53 (1)



. 3A

1995RWKAA. . 31. ..

4 AQUILANO, CASTAGNINO, & LARA

with the mass of gas m,. The pressure is

P = ap’/® | (3)

where « is a constant to be determined by the initial
conditions. Different o gives different evolutions.

From equations (1) and (3) the temperature and
the pressure turn out to be

67
T(R) = % A3/3 (4.a)
and
«
P(R) = -R_SAS/B , (4.b)

where K is the constant of the perfect gas law: P =
pK T; P is the pressure, p is the density and T is
the temperature.

Then the shell classical equation of motion reads

1 1 1

R(t) = f(R) :.AZ_R—2+AIE+AOE ; (5)
where

Ay = —G(M + ) (6)

47l'b o\ 4

A, = — el 8/3

: 3m, () (7)
and

Ag = 4_”2/\5/3 ‘ ()
mg

The gravitational constant is G, the mass of the
white dwarf star is M, the shell mass is m; and b
is 40/c, where o is the Stefan-Boltzmann constant,
and c 1s the velocity of light.

The first term on the r.h.s. of eq. (5) is caused
by the attraction of the central mass M and the self-
gravity of the shell, the second one is originated by
the emitted radiation, and the last one is the inter-
nal gas pressure. Equation (5) shows the balance of
two attractive terms (the first and the second) and
expansive term (the third).

We obtain a dimensionless version of the equation
of motion if we introduce the dimensionless variables

R t
.E—RE.T—%. (9)
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where Ry is the singular point of eq. (5) neglecting
the radiation term, being

Ro=—-— 1, f(R) =0, (10)

and thus ¢y is the inverse of the oscillation frequency
if there is no radiation around the singular point Ry,
le.,

=% (11)

We can also introduce the dimensionless coeffi-
cient

3r72 .3
Q:—él——l—: 4b, G°M* my (12)
Ay RB 243K* v m}

where

My

v =g (13)

In these equations we have neglected the self-
gravity term (my/2), in the constant A, (eq. 6), with
respect to M, because in our system m; << M.

Using the new variables the equation (5) reads

I//:_i+i_£’ (14)

x2 z3 z8

where the primes symbolize the 7 derivation.

Equation (14) will be integrated with the initial
conditions z'(7 = 0) = 0, i.e., the shell will initially
be considered at rest. If = 0 a closed analytical
solution is available.

In the general case @ # 0 we can make a study
of the phase space to see what kind of motion the
shell undergoes.

Equation (14) has real positive singular points if
Q < Q. =0.105 (Q, is critical ). These points are

et = 1—‘45 [1i(1—f(i)”2} ,  (15)

where

164

B = —(1+8)Y2 [f(i) = BE-T)

and



. 3A

1995RWKAA. . 31. ..

OSCILLATIONS OF X-RAY NOVAE 5

i = (1%)1/3 {[1+ (1 - %)1/2}”3 +
fo-(-2)"1")

IfQ = € there is a unique singular point: z, =
0.75. If Q > Q. there are no singular points.
The singular points lay in the interval

0=2(Q =0)<z5Q)<zt@Q=0)=1,

Thus @ = €, is the bifurcation point for the
singular points. The radius z+(Q) corresponds to a
center. Around this point the shell undergoes stable
oscillations. £~ () corresponds to a port, and there
are no oscillations around it.

When there is no radiative term Q = 0, the center
is (2 = 0) = 1 and the port z=(Q = 0) = 0.

The phase space, in (z,z’) coordinates, has the
following characteristics

,,{ >0 it zfeT(9) ;at@)

T

<0 if <z~ or zT<z ,
and

.x“{<0\7’x i a>q, .

The bifurcation point sets a limit for the relation
between m, and my,

243](4_7_
C ArbG M?

(mS/mg)3 < Q (16)
When this relation is not satisfied, the shell in-
evitably collapses onto the white dwarf star.
When Q@ < ., the shell can oscillate between
z7(Q) and z,,4,(Q) being these two points defined
by the conditions

'(z” ;27) = 0 and

' (Tmaz ; ) =0 .

We are interested in the description of oscillations
around the center. Linearizing the equation (14)
around z+(Q), the oscillation frequency is

Q) = [ (32 - 2"~ 6Q)/ear =

= wt?(Q). (17)
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It can be easily proven that for any value of
different from z*t

w(@) < Wt Q) .
Thus w*(£2) is a maximum for the frequencies.
The semiperiod can be obtained from
m

S) = sy

Also we can see the phase diagram for = 0,
Q< Q; and Q > Q. in Figures (1la, 1b, and lc).
This corapletes our dimensionless analysis.

T | T
0.5 _
x’
0.3 | -
T f\\
-0 [ M
-0.3[ 1
B - D=0 A
o 1 | 1 8=0
0 0.5 1.0 1.5 X

Fig. 1a. Phase diagram for {2 = 0 (i.e., no radiation). All
trajectories are stable oscillations.
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Fig. 1b. Phase diagram for = 0.1 (i.e., < 0.1054).
There are two singular points 1 and z~. For 0.67
< T < 0.92 oscillations may occur. For z outside this
interval the shell always collapses.
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T T T 34\ %/3q5/3
o 1 P = (57) " S
X7
0.3 _ B
p(R) = pop(z) = poz~2,
3K* Q
01| i _ oA
. . pO(Q> a) b a3’
o1 F g where Ty, Lo, Py and po are the scale factors deter-
. mined when the radius of the shell is at the center,
defined by eq.(10), for the system without radiative
-0.3[ 7 term (see Fig. 2). These factors are given in c.g.s.
units. T'(z), L(z), P(z) and p(z) are shown in Fig-
- Q=012 ure 2.
-0.5 e
! ! !
0 0.5 1.0 1.5 X

Fig. 1c. Phase diagram for = 0.12 (i.e., £ > 0.1054).
There are no singular points. All trajectories yield as
collapse of the shell.

We use egs. (9), (10) and (13) to restore the di-

mension and we obtain

b 1/3
Ro(M,v,Q,a) = <m>

M1/3 (%)1/30/ ’ (18)

and
0( y [y vEy ) 9 1/2 KZ

DN

In a similar way we can obtain the temperature,
luminosity, gas pressure and density as

T(R) = Ty T(X) = Toz™?,

To(Q, a) = (%)2/3 K53 Q213 /q;

L(R) = Lo L(X) = Loz™°,

K4
Lo(M,7,Q,a) = T (4m)!/?
38/3 72/3 M2/3 Qz/az :

P(R) = PoP(TI) = Pox‘_s,

100

102 ) ] ] ! ] ! | ] ]
0.2 0.6 1.0 1.4 1.8 X

Fig. 2. The dimensionless functions L(z), P(z), p(z)
and T'(z) as function of the dimensionless variable .

3. POST-NEWTONIAN CORRECTION

As the shell is moving in the strong gravitational
field of the white dwarf, the post-newtonian correc-
tion is relevant.

If the shell moves with no relativistic velocity the
corrected equation of motion obtained using stan-
dard techniques (see Weinberg 1972) is

1 1+96 Q
"o _ =
2" = g(z) = 2T 3 26

(20)
where 6/z3 is a correction term due to the central
mass.

For relativistic velocities we would have the fully
corrected equation of motion

" = h(z,2'), (21)
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where T T T
2L
h(z,z') = —(1 - 3/461:’2) 1/z? +
oL
2\1/2 8=0
8+ (1= 8/aa) ) 1700 el
k=
—Q(1-6/42") 1/, (22) g,
g eL
being »

Cc

§(Q,v,0) = 7% = (Ro/to) =G/c?
7 K)4/3
G2 3P ua, oy

and ¢ is the adimensional light velocity.

Equations (14) and (20) are particular cases of eq.
(22). The singular points of this equation could be
computed as in the case of eq. (14) via the transfor-
mation

x——»i:,Q—»ﬁ,g—»g} and h—h ;

)
where

s 1—3/4(62")
TS+ (1-6/4x7)12

(1-3/462")3

O — 2\1/2
9—9(1_6/41}/)/ [6_}_(1—6/413/2)1/2]4 )

and

1 1 Q

~ n _ 1 n o _ se
g(a:,x)_h(:c,a:)_—? FElT

This equation is similar to the classical equation
and obviously has the same singular points that
eq. (14). Thus anti-transforming it we can obtain
zt(Q,6).

The equation (20) is a particular case of eq. (22),
when the velocity post-newtonian correction is ne-
glected. The singular points in eq. (20) are the same
as those of eq. (22).

We show the oscillation semiperiod (S) around a
singular point z% (€2, §)'in Figure 3 which is obtained
using the classical computation with the time trans-
formation
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| 1 | | | 1
0.02 0.06 0.10 0.14 0.18 0.22

Fig. 3. The semiperiod as a function of {2 for different é.

B _ 12\3/2
T =t (1 3/4(51}2) )
6+ (1= 6/da )7/

because with this transformation the relativistic
equation for small oscillations becomes the classical
one.

Also, in Figure 4 the singular points z% are rep-
resented as a function of Q and §.

| 1 I | 1 I 1 1

]
0.06 0.10 Q 0.14 0.18 0.22

0.02

Fig. 4. Dependence on {2 of singular points, for differ-
ent 0.
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TABLE 1

COMPARISON WITH OBSERVATIONAL DATA FROM NOVAE*

Op L Lobs R Robs T Tobs mg /M 6
U Sco 1.1 x 10 200 300 3000 4000 6 7 2x107* 8 x 1078
T CrB 2.5 x 10% 200 300 5000 60C0 4 5 2x107* 7x 1073
RS Oph 1.1 x 10 200 300 3000 4000 6 7 2x107* 8x 1078
WZ Sge 1.1 x 10 200 300 3000 4000 6 7 2x107* 8 x 1078
A 0620-00 1.0 x 10® 200 300 3000 4000 6 7 2x 10°* 8 x 10~%

@ Opins, L and Lops in 1036 erg s™!, R and Rops in 101° cm, T and T,p, in 10° °K.

4. COMPARISON WITH OBSERVATIONS

We are interested in comparing the observational
data with the results of our model, for small oscilla-
tions of the shell. If the observational period is O,
and we fix the mechanical parameters 2 and v; « 1s
determined by means of the transcendental equation

0, = 21‘,0((2,7,01)5[9,5(9,%0‘)}

From equations (10) and (11) we determine the
scale factors. The relativistic correction §(Q2, v, @) is
obtained for eq. (23) when the density, luminosity
and the other parameters can be compared with the
observational data.

In our case, we choose £2 = 0.1054 because around
this point, we have the maximum density of the ob-
served periods (Figure 3), and we choose v = 1073
for novae, because for these objects a dependence ex-
ists between v and the ratio m;/M, and v = 1073
correspond to ms/M = 1074, as is observed in no-
vae (Hoffman et al. 1978; Lewin & Clark 1980). We
select 1 Mg (solar mass) for the white dwarf star
mass.

With this choice of the parameters the luminosity
(the emitted energy) turns out to be within reason-
able bounds, it never reaches a supernovae luminos-
ity, and it never becomes too small for the kind of
objects we are dealing with. Also the temperature is
of the order of the observed ones. In fact, for novae
it turns out to be of the order of 10% °K as observed
(Lewin & Clark 1980).

For 6 = 0, the dependence of T'(t) and L(t) corre-
sponds to “loop a” in Figure 1b.

The computed data for the observed objects are
shown in Table 1.

5. CONCLUSIONS

It is interesting to remark that the coincidence

of Table 1 with the observed values disappear if we
use the classical theory with no relativistic post-
newtonian corrections. In fact, if we take § = 0,
i.e., in the classical limit we would obtain bigger o
and smaller luminosities, outside the observational
bounds. The temperatures would also become ex-
tremely small with respect to the real temperatures.
It is true that we could solve the problem by chang-
ing the value of v, but in this case we would use a
value of m; /M totally different from 10~ for novae.
Thus, the relativistic correction is essential to the
model.

Then, a physical object, similar to the one we de-
scribe in this paper, will undergo thermomechanical
oscillations with the frequency we have calculated.

Our model can be improved in several ways. The
one-shell hypothesis is reasonable enough for novae,
and it works quite well as we showed, but it is some-
how artificial for bursters. Therefore we shall develop
a many-shell model in a forthcoming paper. Also we
use uniform density, because, in order to simplify the
model, we have really focussed all the problems in the
shell dynamics. Even so the coincidence with obser-
vational data is suggestive. The model can thus be
improved with a more realistic density law. We also
hope to take into account the thermonuclear explo-
sion and the axial symmetry of the system in future
models.

The main motivation of the present work is to
provide some easy and dimensionless model to test
numerical codes.
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