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RESUMEN

Se establece —tanto numérica como analiticamente— la imposibilidad de fi-
guras exactas de equilibrio para una masa heterogénea de fluido ideal, autogravi-
tante, compuesta por dos elipsoides confocales en que rigen condiciones de Riemann
o Dedekind. El modelo, por lo tanto, rota como cuerpo rigido o bien esté estatico,
en tanto que el fluido circula internamente con vorticidad uniforme. Por otro lado,
numéricamente se llega a una solucidén aproximada (de cuasiequilibrio) si la vorti-
cidad tiene una discontinuidad en la frontera que divide los elipsoides. Tal solucién
consiste en una serie de esferoides, siendo posible que el mds interno evolucione
hacia un elipsoide en, aproximadamente, la misma forma en que lo hacen los es-
feroides homogéneos. Sin embargo, esta evolucién no se da para la masa externa,
cuya superficie de presién cero tiende mas bien a ser esférica. El caso que no con-
duce a ningin resultado es el de vorticidad comin, que aqui fue tratado mediante
una manipulacién algebraica sencilla del teorema de Hamy.

Por un error numérico, y por desconocimiento nuestro de este teorema, que
invalida la existencia de figuras para un modelo rotante compuesto de n capas elip-
soldales confocales, dimos a conocer un resultado que hoy deseamos reconsiderar,
segun el cual eran posibles las figuras tipo Jacobi para n = 2.

ABSTRACT

We establish both, numerically and analytically, the non-existence of exact
equilibrium figures for a self-gravitating heterogeneous mass of an incompressible
fluid, made up of two confocal ellipsoids in which Riemann or Dedekind conditions
prevail. The body, therefore, can be either rotating as a solid or else be static,
but in both cases the fluid circulates internally with uniform vorticity. On the
other hand, if a discontinuity in the vorticity applies at the boundary between
the two ellipsoids, then an approximate (quasi-equilibrium) solution is numerically
tractable. This solution appears as a series of spheroids, the internal one being able
to evolve into an ellipsoid, in roughly the same way as the homogeneous spheroids
do. However, this evolution is never reached by the external mass whose surface of
zero pressure, instead, becomes nearly spherical. The case which admits no solution
at all is that of common vorticity, here worked out by means of a simple algebraic
manipulation of Hamy’s theorem.

Because both, a numerical error, and our recent awareness of this theorem,
which rules out the existence of figures for a rotating model made up of n confocal
layers, we published a result asserting the existence of Jacobi-type figures for n = 2,
and we reconsider also here this result.
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1. INTRODUCTION

This paper deals with the subject of self-gravitating fluid equilibrium figures, for a model made up of two
confocal ellipsoids of different densities, and is intended to have a dual purpose. In a first step, a past result
of ours on a closely related matter is reconsidered; next, the problem of inhomogeneous equilibrium figures is
focused on the Riemann and the Dedekind sequences. Therefore, the model of interest, which may or may
not rotate as a solid has —in either case— internal motions of uniform vorticity. Originally, any result, and
deduction thereof, was conceived to be justified on numerical grounds only. However, analytical means are also
available to explain some aspects of our general result, and they will be embodied where possible. Throughout
this work, references will be made to our two previous works on the subject, one on spheroids (Montalvo,
Martinez, & Cisneros 1983, hereafter Paper I), and the other, which we wish to rectify here, on ellipsoids
(Martinez, Cisneros, & Montalvo 1990, hereafter Paper II).

1.1. A Reconsideration of Paper I

In Paper II, the model was examined under Jacobi’s viewpoint (Lyttleton 1951), so that the basic idea was
to investigate if a Jacobi model could support a kind of atmosphere, also ellipsoidal in shape and provided, to
avoid any dynamical effect with the same angular velocity. The conclusion to this problem, as worked out in
Paper II, was that under certain restricted conditions, equilibrium figures were possible. This is, however, false
since in actual fact no figures of this sort are possible at all. The reworking of this problem was motivated by
a warning from a colleague (Chambat 1992) about the existence of an old —yet not widely known— theorem
(Hamy 1887), ruling out our figures of Paper II. The scope of this theorem is far reaching, since it works for
an ellipsoidal fluid made up of n confocal layers (each of different density) all of them rotating with common
angular velocity. Our model, therefore, is Hamy’s for n = 2, and in the Appendix we work, following closely
Chambat’s version for n layers, the proof of the theorem for n = 2. As for the origin of the incorrect solution
exhibited in Paper II, it rests on a misapplication of the confocality condition at a certain step, involving the
upper limit of the elliptic integrals £ and F, in the first two terms of equations (12) and (13). The correct
equations should have a subscript a, instead of n, in such terms. On the other hand, the theorem also holds
if the model has one less axis (Tassoul 1978), as was independently shown by numerical means in one of the
cases treated in Paper 1.

Having accomplished the rectification of Paper II, we resume the task of investigating if equilibrium figures
are possible when our body is modeled on Dedekind’s or Riemann’s, rather than on Jacobi’s masses. A priori,
Hamy’s theorem when suitably modified, is likely to play an important role in the development of such problems
and, accordingly, a solution implying equilibrium figures would be therefore forbidden; we will see that —to a
great extent— this is so. The problem, therefore, would be finished at once. However, an approximate solution
is tractable in the event that the vorticity has a discontinuity within the model and, although the concept of
figure of equilibrium must be taken with some caution, we hope that our results may rise the interest of those
who work in the field of stellar models (see e.g., Chambat 1994).

2. BOUNDARY CONDITIONS

Following the routine employed in § 2 of Paper II, we now give a short exposition of the Riemann procedures
in terms, to simplify matters, of a homogeneous ellipsoidal mass. The composite model and its boundary
conditions are next recalled.

2.1. Equilibrium Conditions

We recall that the kind of internal motion proposed by Dedekind can be represented (Chandrasekhar 1965a,b)
by

vy = —q(zq, vy = (1—¢q)Czy, vz =0; (1)

where vy, vy, vs are the rectangular components of the fluid’s tangential velocity, 5 = CIAc, is the vorticity, k
the unit vector along the z3 axis, and q is some constant which, in order to preserve the ellipsoidal boundary
must be

__d
(a} +ad)

(2)

q

The constraint of zero external pressure can be writen as

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



1995RWKAA. . 31. . 101C

QUASI-EQUILIBRIUM FIGURES 103
1
0= B+ 5(1:% + 22)[w? 4+ (w + (1 — q)¢?] + constant , (3)

where B, is the gravitational potential of an ellipsoid, assumed of semi-axes a; > a3 > a3z, and & = wk is its
angular velocity. The equations yielding the Riemann figures follow then from the ratios of partial derivatives

, boy _ brs _ bny
for  foo fus

where ¢ stands for the right-hand side of equation (3), and f is the surface equation of the ellipsoid.
If the Dedekind (or Jacobi) sequence is desired, then w (or ¢) is made zero in equation (3).

(4)

2.2. The Model

The above proceedings will be applied now to our model, whose interior (exterior) ellipsoid will be referred
to as the ‘nucleus’ (‘atmosphere’), writing a prefix n (a) to pertaining quantities; Figure 1 is a scheme of the
model when it is endowed of a solid-body rotation plus an internal motion of different vorticities, as in the last
of the four cases treated here. By its geometry, the model demands twice the application of pressure continuity:
at the body’s external surface and at the interface nucleus-atmosphere. One further constraint is that this last
surface be free from surface tension, under the hypothesis that no flow of matter occurs across it (Landau &
Lifshitz 1959). Let us write together these conditions at each point of the body’s outer surface

p=0, (5)

and at each point of the internal surface

Pn = Pa; (6)

we will define a new quantity ¢’, as the left-hand side of p, — p, = 0. To go one step further, we need the
potentials at the surfaces of density discontinuity of the body. The potential is, of course, continuous at these
surfaces.

Fig. 1. The intended model. The large curved arrows indicate internal motions; the model itself is rotating as a solid
body.
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2.3. The Potentials

The derivation of the potential B, at each point of the atmosphere is accomplished by following the sequence
of steps indicated in Figure 1 of Paper I. We have

B—7rG[pa ag,0 /mﬂ(l Z = )+
, a a*%a;“azx%as 0 Aa a3i+u

< du z?
Hon = pJamntn, [ - Z5] O

2
an. +u

where the meaning of A,, A,, and X is given in Paper II. The first integral of equation (7) represents an
interior contribution from a homogeneous ellipsoid of density p,, and so implies an excess of mass. This is
compensated by the second integral, which is to account for an exterior contribution from a fictitious nucleus
of density p, — pa; equation (7) also satisfies the potential at each point of the nucleus, B,, letting A = 0 in
the lower limit of the second integral.

2.4. The Hypothesis of Confocality

As pointed out in Paper II, the problem of evaluating the partial derivatives in expression (4) gains a
considerable simplification if the model is assumed as made up of confocal ellipsoids. The reason for this, we
recall, is that the ellipsoidal coordinate A is then constant all over the body’s external surface, and zero all
over the interface nucleus-atmosphere (see, however, the Appendix). With the convention that a subscript 1
(2) refers to the equatorial (meridional) direction, and e means eccentricity, the confocality relations are those
given in § 2 of Paper II. As a consequence of those relationships the figures, if they exist, should agree with

en; > €a;, 1=1,2, (8)
and

enl/eal = en2/eaz . (9)

The nucleus, therefore, is polarly and equatorially more flattened than the atmosphere, and the eccentricities
are not independent of each other. In the treatment that follows, e,, will be dropped out of the problem.

3. EQUATIONS AND RESULTS

We now proceed to deduce, from conditions (5) and (6), the equations that relate the body’s physical'a'nd
geometrical parameters for a number of different requirements. The angular velocity w? and the vorticity
C,":,a, which will appear both normalized to 4mGp,, are given in terms of algebraic relationships among the

eccentricities, the body’s inhomogeneity degree €[= (pn, — pa)pz '], and the elliptic integrals of the first and
second kind

a
F, = / (e2, — €2, sint) "%, dt
0
o
E, = / (€2, — €2, sin2t)1/2e;21dt, (10)
0

4
F, :/ (€2, — €2 e e;fsinzt)“lﬂeazdt,
0

ny-az

and

B
2 2 2 -2 . 2.N1/2,—1
E, 2] (ea, — €n,€5,6n, SIin°t) / €q, dt,
0
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where o = cos™ (1 — €2,)1/2, and B = cos™*(1 — €2,)'/2 (Mac Millan 1958). For economy of space, however,
only the set of equatlons corresponding to the case w =0, ¢2 = (2, will be fully displayed.
3.1. Case (2 =(2,w?=0

In this and in the next case, the body’s internal motion is assumed uniformly distributed throughout its
volume, that is, the vorticity is homogeneous. There is, then, no need to affix a subscript to (. With thxs in
mind, the quantl’cles ¢ and ¢', following each from conditions (5) and (6), become

2 .2

1 as a
= B, + =(2? + 22)[-—2—22 (2] + constant = 0, 11
é a+2($1+ 2)[((131—{-4132 2<] (11)
and
a2
' = ppBy — paBg + 2\::31 +x2 Ypn — [(a——al—aa—h( ]+constant =0. (12)

Making expression (11) and the expression for the surface of the atmosphere to fit the ratios (4) there results

(e~ ehed) o (L))o eh) (b))
(261212 - 6127,16(212 2 en2(e7212 - 61211) €n267211
(1- 67211)1/2(1 _ 61212)1/2€Fa N [en2(1 _ e )3/2(6 2 - e72“622)1/2
en2e12'11 632(8%2 - 6%1)
en:(eﬂg - enl )1/2(1 a )1/2]E + en2(e1212 - 67%1632)1/2(1 - GZQ)I/ZFG
a
621622 67%1622
6(12(1 - 622)1/2(1 - 6311)1/2(1 - 6127.2)1/2(8312 - 6274622)1/26 _ (1 - 632)(6312 - eilegg) (13>
- e2 (e, — €2 e2 (e2 —e2) '
na\"ny ny az\~"ng ni
NG A PPN (T Al A (T RN U R (e R
- a
(267212 - 67%16(212 2 (e?lg - 6727.1632)(6712 - e?“) 6727.1( 72'L2 - e?ll)
1_62 1/2(1 — ¢2 \1/2 €2 (1 —e2 )3/2
_( 2 (2 ) Fot+ 57 n22( 2 (11722 2
€ny€n, a2(en2 —€h,6a ) (6
TR L (N8 AP LY )”ZF,,
ealeiz(enz 6311632
26(12(1 - 6 )1/2( 67212)1/2(1 - 632)1/26 _ 267212(1 - 61212) . (14)
(eng 821632)1/2(6%2 - 67211) 632(6212 - 6%1 ,
a similar procedure with expression (12), and the surface of the nucleus gives
eh,(en, —enea,) o _ ((1=er )¥?(A~ el )2 (1—ep )/?(1 - 622)1/2]€E
- n
(2e2, - e e )? en, (€2, — e%l €n, €l
G 0 0 G o 0 G Ml 1.0 e L )

2 3 (.2 2
€2 en, eaz(e,12 e,
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o= 3) V2, = )T | ena(L = el) (R, — el
e2 e3, . e2 el ¢
JOod)-d) (ool —ded)
(€3, — €%, €5, (ed, —ea))
and
61?12(61?7.2 - 67211632 2 — [ (]' - 6312)3/2 en2(1 - 6311)1/2(1 - 6727,2)1/2]€E
(2e%, — €2 e2,)? eny(1—e2 )M /%(e2, —e2, er (eh, — €2, *
_ (1 — 672141)1/2(1 — 67212)1/2€F + [en2(1 - 64212)1/2(6?12 N 67211622)1/2(1 - 61212)
" 3,(1—e2,)(e2, - c2,
e (L—ed ) /2(ed, —ep e )!/? eny(1—e3 ) /?(ed, — b el )2
+ 2 23 (p2 2 ]Ea - 2 .3 Fo
enleag(enz - enl) 6"16‘12
(1-ep) (1—ep)en, —ener,) en,(l—ed)

- ¢ ny — Cmay) . (6
(en,—e€h) el (l—el ek, —eh) el (ed, —e2)

It can be seen that the right-hand sides of equations (13)—(16) are just the right-hand sides of equations
(12)~(15) of Paper II (after correction, see the discussion following the Introduction); the left-hand sides, on
the other hand, are related according to

2 2 \2 2 2 .2 )2
2 _ (aa1 + aaz) 2 _ (26712 - en16n2 2 . 17
Zi = 7 3 Qi_ 2 5 5 5 ZQi. 1 =1to4. ( )
ag,%5, en2(6n2 - enleag)

It is now apparent, from relation (17) and the procedure in the Appendix, that Hamy’s theorem applies
to this case. This is sufficient to warrant a null result, which the numerical analysis of the system of coupled
equations (13)—(16) confirms.

In the cases that follow, only the left-hand side of the respective equilibrium equations, with modifications
as required, will be handled not being necessary to write down their right-hand sides since they are exactly
those of equations (13)—(16).

3.2. Case (2 =(2,w? #0

a)

We now review the preceding case for w? # 0. Adding w? + (w to the expression enclosed in square brackets,
which is a factor of $(z? + z3) in expressions (11) and (12), we obtain the equilibrium equations suitable for
the current case. These are then just equations (13)-(16), with Q2 + ZQ added to their left-hand sides.

If to the first (second) of these modified equations the third (fourth) one is subtracted, we arrive at the
same contradiction as in the preceding case, which is as expected, since the additive terms Q2 + ZQ cancel
out exactly. Thus, a modified version of Hamy’s theorem is once again met, and we conclude that equilibrium
figures are forbidden, as our numerical approach confirms.

In reaching our conclusion that no figures can arise from the two revised cases, we have reverted to both, an
analytical and a numerical method. Looking deeper into the model, let us see how an even more fundamental
argument can be invoked. In so doing, we focus our attention on one of our basic pre-requisites, namely, that
no matter can flow across the boundary surface nucleus-atmosphere. Indeed, this assumption was implicitly
violated in our development of the problem, since the velocity of the fluid cannot be tangential to the outer
boundary of the nucleus (Chambat 1994). If a perpendicular component of the velocity is present, the nucleus
cannot preserve its shape, and the figure is unable to be formed at all.

It was seen, from the two previous cases that, if the vorticity is distributed homogeneously throughout the
body, then no figures are possible because of a mathematical inconsistency of the equation systems. Next, these
two cases are reanalyzed in the event that the vorticity changes abruptly at the interface nucleus-atmosphere.
Thus, we have in mind to provide the body with an inhomogeneous distribution of vorticity, and so the quantity
Z? will have to be provided of a subscript n, or a.
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3.3. Case (2 #(2,w?=0

In the current case the body, as a whole, remains static, while its internal currents behave as explained above.
By such distribution of vorticity we mean that the semiaxes of the atmosphere (nucleus) fix the vorticity of
the atmosphere (nucleus). Inserting the above considerations into the general equilibrium conditions (5) and
(6), we have

2 .2

1 a; a
¢ =B, + —2‘(1‘% + :L'%)[(a—z%cg] + constant =0, (18)
a1 as

and

8= puBn— puBa + Hat 4 DB 2y, T ontant =0, (19)
= PnDn — Paba o\T1 2 pn(a% +a,% 2 5n p"'(a% + a2 )2 a -
1 2 1 az

The left-hand sides of the pair of equations coming from ¢ can be reproduced from equations (13) and (14),
with no more change than providing a prefix a to Z?, while those coming from ¢’, on the other hand, modify
into

(=) et 0 k=)
(2—e2 )2 ¢ 7" (2e2,—e2 )’

()72 (20)

In this and the next case no analytical means will be used. Numerical analysis —on the other hand— points
to a solution or, rather to an approximate solution. We may shortly describe our approach, based on Newton’s
iterative method, writing the equilibrium equations as

G; = (lefi-hand side) — (right-hand side) i=1to4 , (21)

which demands, for a solution to exist, the vanishing of G;. For instance, if a pre-known figure, say a Jacobi
one, is computed this way, we reach G; ~ 1078, In the case that occupies us, instead, we consistently have
10~ < G; < 1078, for a relatively wide range of €. For € 2 10, however, G3 and G4 are 2 1073. Another
important constraint shown by our general result, concerns the geometry itself of the figures, since none of them
has such form as an oval-like nucleus with an oval-like atmosphere. Rather, the solution is mainly spheroidal in
character for both nucleus and atmosphere, but the spheroidal nucleus can evolve into a well-defined ellipsoid
if the nuclear vorticity is conveniently increased. However, if the nucleus evolves into an ellipsoid then the
atmosphere or, more accurately, its surface of zero pressure becomes, roughly, spherical. This means that
throughout our solution the equatorial section of the atmosphere is close to a circle. We remark that because
of geometrical considerations the figures, at any rate, must fulfill e,,, > e,,, and e,, > e,, and, to that point,
we must also expect that e,, > €,, and eq, > €q,, since the z3—axis is the axis about which the motions occur.
Table 1 shows, for increasing ¢, a cross-section of our general result, which proves valuable to be given in
order of increasing e,,; these static models follow from equations (13) - (16) after the left-hand sides of the last
two of them have been modified according to expression (19). For fixed ¢, the table consists of three sections
defining the geometry of the figures. We shall refer to the figures of ellipsoidal nucleus simply as ellipsoids,
thus stressing somehow that this was the kind of geometry we were originally engaged with.

3.8.1. Spheroids

The family of spheroids satisfying the current conditions is, if we ignore its non-zero equatorial section,
formally identical to that of Paper I, when the linking between (2, and w2 , occurs by the intermediary
of proper geometrical constant factors. Therefore, this result will not be repeated in extended form here.
Initially, when e is still very low (not included in the table) and so the figures are quasi-homogeneous, the value
of Z? tends to match that of ZZ, and we have the equivalent of a two-axes Maclaurin model. The numerical
calculation of these last figures becomes difficult, however, since a cancellation of € as a common factor took
place in the first two equations, at a previous stage to their numerical analysis, which reflects in an irregular
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TABLE 1

PROPERTIES OF THE MODELS FOR CASE ¢2 # (2,u? = 0°

72 en, en,  10°22  10%,, €ay zZ?2 en, en,  10%Z2  10%e,, €ay
e=20.1 e =1
Spheroids Transition Figures

0.0700 0.0001 0.4447 567 0.684  0.3185 0.7983 0.0012 0.9263 94 1.700  0.1323

0.1057 0.0002 0.7500 421 0.930  0.2790 0.7983 0.0050 0.9276 3.3300 1.340  0.0250
0.1221 0.0003 0.5692 3178 0.780  0.2429 0.7983 0.0100 0.9276 1.2000 1.610  0.0150
0.1443 0.0005 0.9975 255 1.090  0.2179 Ellipsoids

Transition Figures
0.1221 0.0010 0.9585 79 1.250  0.1217

01221 0.0050 0.9938 0.5330 0.500  0.0100
0.7990 0.2500 0.9300 0.0056 2.680  0.0010
01221 0.0100 0.9938 0.3400 0.800 ~ 0.0080 | 8138 05000 0.9380 0.0044 4.260  0.0008
Ellipsoids 09322 07500 0.9551 0.005 6.280  0.0008
32300 0.9675 0.9894 0.0067 7.820  0.0008

01220 0.0500 09931 0.0212 1000  0.0020

0.1220 0.1000 0.9931 0.0213 2.010  0.0020
0.1222 0.2500 0.9933 0.0200 5.000  0.0020 e=15
0.1246  0.5000 0.9940 0.0044 4.030  0.0008
0.1440 0.7500 0.9956 0.0056 6.000  0.0008
0.1443 0.7512 0.9957 0.0053 5.960  0.0009 0.2750 0.0001 0.4712 868 0.690  0.3293

0.7983 0.05600 0.9277 0.0219 1.070  0.0020
0.7983 0.1000 0.9280 0.0121 1.610  0.0015

Spheroids

0.2270 0.9000 0.9975 0.0063 7.210 0.0008 0.8556 0.0002 0.8100 38 0.519 0.2617
p—— 1.0600 0.0002 0.9084 28 0.500  0.2295
—— 1.1270 0.0002 0.9593 0.0251 0.585  0.2159
Spheroids

0.1500 0.0001 0.4382 1396 0.980  0.4212 Transition Figures

0.3660 0.0002 0.8028 497 0.925  0.3008 1.0600 0.0012 0.9083 81 1.700  0.1233

0.4797 0.0003 0.9438 204 0.622  0.1949 1.0600 0.0050 0.9100 3.3300 1.370  0.0250
0.4900 0.0004 0.9617 155 0.660  0.1705 1.0600 0.0100 0.9083 0.3320 0.872  0.0079
0.5613 0.0030 0.8127 0.5613 0.003  0.8127 Ellipsoids

. Transition Figures

1.0600 0.0500 0.9085 0.0190 1.040  0.0019

0.4797 0.0001 0.9512 84 1.300  0.1256 1.0600 0.1000 0.9088 0.0019 2.090  0.0019
0.4797 0.0050 0.9569 0.7700 0.630 0.0120 1.0610 0.2600 0.9117 0.0034 2.250 0.0008
0.4797 +0.0100 0.9570 0.5100 1.020  0.0098 | 10800 0.5000 0.9217 0.0043 4.290  0.0008
1.1270 0.6388 0.9318 0.0049 5.410  0.0008
Ellipsoids 1.2311 0.7500 0.9434 0.0054 6.280  0.0008

04797 0.0500 09571 00192 0993  0.0019 5.0000 0.9745 0.9892 0.0065 7.780  0.0008

0.4797 0.1000 0.9572 0.0194 1.980  0.0019
0.4802 0.2500 0.9584 0.0037 2.080  0.0008 =2
0.4894 0.5000 0.9631 0.0043 4.150  0.0008
0.56635 0.75600 0.9732 0.0054 6.160  0.0008
1.0000 0.9181 0.9869 0.0064 7.440  0.0008 0.3680 0.0001 0.4889 737 0.940  0.3066
0.7500 0.0003 0.6788 188 0.803  0.1849
€ =1 1.2900 0.0003 0.8935 175 0.600  0.1800
1.3500 0.0003 0.9815 151 0.600  0.1700

Spheroids

Spheroids o _
0.1900 0.0001 0.4515 613  0.600  0.2989 Transition Figures
0.6144 0.0002 0.8030 244 0530 02120 | 1.2000 0.0012 0.8932 91 1750 0.1307

0.7963 0.0003 0.9247 215 0.750  0.2000 1.2900 0.0045 0.8925 3.2300 1.240  0.0246
0.8354 0.0004 0.9776 185 0.727  0.1856 1.3000 0.0100 0.8968  0.3390 0.882  0.0079
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TABLE 1 (CONTINUED)

Z? €n, en,  10%Z2  10%,, €a, 7?2 en, en,  10%Z2  10%s,, €a,
€ = 2 €= 8
Ellipsoids 3.6900 0.0008 0.843% 50 0.111  0.0308
1.2953 0.0500 0.8949 0.1110 2550 0.0046 | 42300 0.0003 0.9387 27 0.259  0.0715
1.2953 0.1000 0.8953 0.1860 6.600  0.0059 Cransition B
1.2965 0.2493 0.8983 0.0034 2.180  0.0008 ansition Figures
1.3188 0.5000 0.9102 0.0043 4.340 0.0008 3.6900 0.0020 0.8438 65 0.265 0.1101

1.4974 0.7500 0.9352 0.0055 6.330  0.0008 3.6900 0.0050 0.8433 3.1500 1.450  0.0242
P 3.6900 0.0077 0.8433 0.1200 4.370  0.0047

Spheroids Ellipsoids
0.4400 0.0002 0.4015 211 0731  0.1739 3.6900 0.0500 0.8435 0.1120 2.720  0.0046
1.0000 0.0002 ' 0.5982 387 0.800 0.2498 3.6900 0.1000 0.8442 0.0191 2.230 0.0019
2.1300 0.000§ 0.8659 217 0.820 0.1987 | 3.6900 0.2500 0.8488 0.0034 2.320  0.0008
2.3400 0.0003 0.9254 0.0121 0.551  0.1500 3.7400 0.5000 0.8669 0.0044 4.550  0.0008

Transition Figures c =50
2.1300 0.0020 0.8649 105 3.180  0.1397 Spheroids
2.1300 0.0050 0.8639 3 1.380  0.0240

5.9700 0.0001 0.4609 1210 0.450  0.2084
2.1400 0.0104 0.8663 0.1220 0.576  0.0048 13,0000 0.0001 0.6710 500 0310 02085

Ellipsoids 19.3400 0.0004 0.8160 165 0.780  0.1591
2.1300  0.0500 0.8654 0.1070 2.590  0.0045 | 194400 0.0008 0.8182 171 1.580  0.1616
2.1300 0.1000 0.8659 0.0190 2.190  0.0019

21370  0.2500 0.8699 0.0036 2.270  0.0079 Transition Figures
2.1800 05248 0.8875 0.0047 4.740  0.0008 | 19.4500 0.0010 0.8182 56 1.220  0.1000
2.4300 0.7500 0.9176 0.0055 6.450 0.0008 | 19.5000 0.0015 0.8187 19 1.080  0.0592
3.9000 09181 0.9603 0.0069 7.800  0.0008
5 Ellipsoids
€ =
. 19.4600 0.0400 0.8185 0.4470 4.470  0.0091
Spheroids

19.4600 0.1000 0.8194 0.0044 1.090  0.0009
1.0000 0.0002 0.4517 1249 1.320  0.2845 19.4700 0.2500 0.8248 0.0046 2.730  0.0009
3.8500 0.0003 0.8657 123 0.468  0.1500 19.7100 0.5000 0.8461 0.0058 5.310  0.0009

% Notation: € 4 1 is the density ratio pnpgl; 22 refers to vorticity normalized to (47era)_1; €nys €ngs €ay, €a, are the

equatorial (1) and meridional (2) eccentricities of the nucleus (n) and the atmosphere (a). Figures of bifurcation are in
| P g

italics.

accuracy (G2 ~ 10_7,G3,4 ~ 10_13). It is also possible, as contradictory as it may seem, to calculate a
homogeneous figure for € # 0. This occurs when the confocality condition reaches its limiting point (see this
case for ¢ = 0.5 in Table 1), because the nucleus grows so that its size becomes comparable to that of the
atmosphere. We will focus our attention, and this will become clear as we proceed onwards, on spheroids
which, besides being of high e,,,, are also of low e,,. In terms of vorticities, these spheroids are of both, high
Z?2 and low Z2. The spheroidal family extends even for the range —1 < ¢ < 0, where we have the mathematical
fact that the figures are of both, p, < p, and Z2 < Z2. These figures are not of physical interest.

5.3.2. Transition Figures

In order to deal with the ellipsoidal form for both, nucleus and atmosphere, a given spheroid must —in the
first place— be provided of non-circular equatorial sections, that is, e,, and e,, must be substantially increased.
One finds, however, that not all spheroids are susceptible to be so deformed; in fact, only a particular spheroid,
for given ¢, can have such changes and, moreover, only in e,,. As we have already emphasized, e,, remains
close to zero throughout our solution. The particular spheroid has a remarkable polar flattening in its nucleus,
such as one of those listed last in the section of spheroids of Table 1. Therefore, in order to accomplish our
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aim, the series will continue to be described in the direction of increasing e,, which, in this second stage will
comprise the range 1073 < e,, < 1072, These figures were isolated because they represent a sort of transition
between the spheroids and the figures referred here as ellipsoidal. A transition figure, then, has a nucleus whose
equatorial flattening is midway between spheroidal and ellipsoidal, and an atmosphere whose polar flattening is
noticeable (although of low value). These figures are the last, in the sequence of Table 1, in showing a relatively
important atmospheric fluid activity, they being of Z2 >> ZZ2. It will prove valuable, from here onwards, to
notice that an increase of e,, is accompanied by a decrease, in roughly the same proportion, of eq,, the two
other flattenings remaining, more or less, constant, i.e., €4, close to zero and en, close to 0.9, or so. Also notice
that, if we think of our model, the closest figure to it would be the first listed among the transition figures.

3.3.3. Ellipsoids

A look into the transition figures shows that we cannot still claim to have arrived at the ellipsoidal form, even
for the nucleus. In order to deform one such figure into the ellipsoidal form for both, nucleus and atmosphere,
an additional increase of at least three of its sections, namely, en,, €4, and eq, is required, while a somewhat
lower value of e,, would also be desirable. From our calculations it was noticed that —at least for the nucleus—
the ellipsoidal form was not impossible, but such ellipsoids were restricted to be very flattened at the poles.
Since spheroids of high nuclear polar flattening are not unusual we tried them, as a starting point, in order
to increase the nuclear equatorial flattening, and we succeeded at it. The fact that the figures with ellipsoidal
nucleus results from a spheroid of high nuclear flattening vaguely reminds us, if we ignore the atmosphere, of
the bifurcation of the Jacobi sequence from the Maclaurin sequence, so that two figures, one spheroidal, the
other ellipsoidal can have the same angular velocity. In our case, the duality of figures occurs according to
72, as it is easily deduced from Table 1. To stress this question Table 1 contains some of these double-valued
figures. Figure 2 depicts how all these sequences, along with that of the spheroids of Paper I, branch-off from
each other in a scheme provided of no axes. We may read Figure 2 as follows. From each point (e, Q?) of the
Maclaurin sequence a branch (actually a continuum of branches) of the series of spheroids from Paper I departs,
¢ increasing as indicated. Likewise, from each point of each of these branches, the quasi-equilibrium spheroids
of the current work emerge, the ellipsoidal figures bifurcating then from a certain point of these branches.
Accordingly, the direction of increasing Z2 would be as indicated. Figure 2 should not be taken too literally,
since each series needs for its description of a different number of parameters; it merely provides us of a quick-
mean to visualize global features. Let us continue with the description of the inhomogeneous ellipsoids in the
direction of increasing e,,. For 0.05 < e,, < 0.25, 7?2 and, correspondingly, en,, remain essentially constant,
while the atmospheric polar flattening diminishes rapidly losing, therefore, the low although significant value,
it had in the transition figures; at the far right of this interval, Z2 collapses down to a minimum value of order
10~7; for e,, > 0.25, Z?2 increases slightly, but still within that order of magnitude. The polar flattening of
the atmosphere decreases to a value comparable to that of the equatorial one which is, we recall, very low
throughout the solution, say ~ 10~*. Hence, the atmosphere looks more like a sphere, which is consistent with
its very scarce fluid activity; thus, in these figures Z? is negligible in comparison with Z%. We can understand,
with the help of relation (9), our current results since, as two of the flattenings (en, and eq,) remain essentially
constant for whatever reasons, then if other (e,,) increases, another (e,,) must necessarily decrease. We must
therefore abandon any hope of having an ellipsoidal atmosphere surrounding our ellipsoidal nucleus.

2 2
Q, #Q
—_

e, =e, e, = constant

Spheroids | Quasi-
Ellipsoids J equilibrium

increasing

€ increasing Maclaurin

Fig. 2. Schematic diagram of the inhomogeneous sequences of this work, and that of Paper I. They are shown, in a
conventional manner, branching-off the well known homogeneous sequences.
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Fig. 3. The geometry of the obtained models is shown. (a) Spheroids, and (b) the figures with ellipsoidal nucleus.

Figure 3 illustrates the shape assumed by the figures, as they evolve from the spheroids, (a), into the
ellipsoids, (b). The value of €q, that fits better into any nucleus of en, < 0.25 is about 8 x 10~4, independently
of €, so that, after all, there is an unvanishing vestige of polar atmospheric flattening; the figures with this e,,
value have Z2 ~ 10~7, and are of the highest possible degree of accuracy. Any attempt to provide a given
ellipsoidal nucleus with an atmosphere more flattened at the poles than 8 x 10~* results in lower accuracy. The
fact that, for e,, > 0.25, and independently of ¢, e,, settles to a fixed value, suggests that the gravitational
coupling between the nucleus and the atmosphere becomes steady. However, this steadiness is not reached
abruptly, rather, it begins to be patent as we proceed onwards from the bifurcation spheroid. As for the
flattening e, it increases slightly as e,, , Increases, but it also decreases slightly if ¢ increases. Thus, the overall
appearance of one of these figures is that of a small seed, surrounded by a nearly spherical, more tenuous, halo

(see Figure 3b). Figure 4 gives Z2 vs. ¢, and it shows the regimes of these variables where the various kinds
of figures occur.

T Spheroids Transition figures —7

2
- Z,

Fig. 4. This graph of € vs. Z,zl shows the regimes of these variables where the various kinds of figures occur.
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3.4. Case (2 #¢2, w2 #0
To finish our study, let us examine the previous case in the event that the body is able to rotate as a solid
(see Figure 1). We are looking, therefore, for inhomogeneous Riemann figures when the fluid’s internal motion
has a discontinuity in its vorticity at the surface of separation between the nucleus and the atmosphere; as we
saw before, no such figures exist when that discontinuity does not apply. The quantities ¢ and ¢’ are now

2 2

1 a;. a
¢ = B, + 5(9:% + 23)w? + (aw + —52—2—(?] + constant = 0, (22)
ag, + ag,
and
- 1 2 2
¢ = pnBn + 5(171 + z3)
2 2 2 2

_ 2 9n, %, 2 _ Ga, %4, 2 _ 23
X {(pn = pa)w® + pn (a2, + a2, 560 — Pa (a2, +a32)2<a + pnaw — plaw} . (23)

Therefore, the left-hand side of the two equations derived from expression (22) are

QZ Z Q 6312( 7212_ Tll a?)z2 24
HA0t G, T a | .

and those derived from expression (23) can be taken from expression (20) adding the terms

(e+1)

Q24 Mg Q——ZQ (25)

TABLE 2

PROPERTIES OF THE MODELS FOR CASE (2 # (2, w? £0°

Q2 en, €n, Z, 10%22 10%e,, €a,
e =1for Z2 = 0.7983
Spheroids
0 0.0001  0.9269 0.0676  45.700  0.120 0.0925

0.00001  0.0001  0.9369 0.0613  37.000 0.120 0.0925
0.00005  0.0001  0.9316  0.0528  27.900 0.120 0.0916
0.00008  0.0001  0.9619  0.0488  23.800  0.120 0.0912

Transition Figures

0 0.0012  0.9263  0.0965  0.009 1.720 0.1319
0.00001  0.0012  0.9364  0.0908  0.008 1.710 0.1328
0.00005  0.0012  0.9515  0.0771  0.006 1.54 0.1247

Ellipsoids

0 0.3022  0.9312  0.0006  0.004 2.590 0.0008
0.00001  0.4829  0.9373 —0.0057 0.325 3.800 0.0007
0.00010  0.6040  0.9436 —0.0200 4.230 4.330 0.0007
0.00100  0.7468  0.9480 —0.0620 39 6.930 0.0009
0.01000  0.8921  0.9734 -0.1991 396 7.700 0.0008
0.05000  0.9805  0.9932 -—-0.4463 1992 8.300 0.0008

@ Notation: same as in Table 1, with Q2 = w? (47era)_1, the angular
velocity of the body.
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The equations derived from conditions (22) and (232 are, as expected, satisfied by the particular value
? = 0 and we have already discussed the figures. For Q° # 0 an approximate solution such as that meant in
the previous case also applies. This means simply that the ﬁgures of Table 1 are able to rotate as a solid body,
with the only difference that now the fluid circulation within the atmosphere can be retrograde, that is, Z, can
be negative. This fact, which for the figures having ellipsoidal nucleus begins to occur as soon as the angular
velocity is hardly noticeable, allows these figures to rotate as a solid body, otherwise they could not do so,
considering that their atmosphere cannot be other than nearly spherical. In other words the atmosphere, when
the body rotates, retains its shape by virtue of the contrary effect which supposes a retrograde circulation.
The nucleus, on the other hand, is not affected in its circulation as a result of increasing Q2 but its flattening,
in particular the equatorial one, is severely increased. Thus, beglnmng with a static ellipsoid of Table 1 of
fixed both, Z2 and ¢, a new set of ellipsoids is generated by increasing 2 thus enlarging the sequence given in
Table 1. Table 2 gives, for ¢ = 1 and Z2 = 0.7983, the rotating figures, where Q? has been increased up to a
value such that the equatorial ﬂattemng almost equals the polar one. This last flattening also increases as Q2
does, but at a much slower rate than e,,.

The authors wish to point out that the intervention of F. Chambat was decisive to unveil the error that
altered the results of paper II.

APPENDIX

A PROOF OF HAMY’S THEOREM FOR OUR MODEL OF PAPER II

The proceedings of this Appendix follow closely the proof for n layers provided to us by F. Chambat who,
in addition, proves that confocality is a necessity for relative equilibrium, rather than an ad hoc hypothesis.
The proof, for n = 2, consists in reaching a contradiction upon subtraction of equation (12) from equation
(14), after correction, of Paper II. However, it will prove convenient to resort to the integral version of such
equations, which are

W . du( 1 )+ ( ) o [ w1 )
oG = Pala,Gg,0q, ) A, 'aZ tu Pn = Pa)ln,0n,0n, Anta,, +u
ag ® du 1 * du 1
_ 2*: [Paaal Qgylay A, ((1, ) + (pn pa)arnanzana \ An (a L+ u)]

and
w? ® du 1 * du 1
Pyl = Pala,qa,0q, . A, ( T u) + (pn = Pa)an,anyan, An a2 tu

o

)

2 0
ay,, du 1 B < du 1
03“ [Pala, G, A, /0 A, ags T u) + (Pn — Pa)@n, An,an, s A, (a T u)]

taking the difference of these two equations we get

* du 1
0= (Pn - pa)anxanza"a[/ A
n

a,2h+u) A An(a +u)]

a? a? * du 1
+<§—azﬂ>paaala®aaa | S @

2
n, Aga, +u

2 oo
a; du 1 * du 1
+a23 (Pn = Pa)@n,an,an, /)\ 'A‘;(aia Tu — Pa)n;qn,an, An(m

ay

)-

We now proceed as follows in equation (26): write a single integral, which we may call I;, instead of the
difference enclosed in square brackets; split the last integral into two, call them I5 and Is, where I5 runs from 0
to A, and I3 runs from A to oo iii) write together I; and Ip; iv) write together I3 and the penultimate integral.
After these steps, there results
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af —a2 A du, 1
0—(pn~pa)anlan2an3(T)/o A_n a%3+u)

2 2 00

Gz, Gp, du 1
+( 2 T 5 )Pala,@a,da, A (

aa1 an1 0 a

i

positive, since by confocality we have

|Q
Qo

Q
a0

2
ag, +u

=2

1

ai  a? ® du 1
)+ G e [ T @)

2 2
az, AptaZ, +u

ni

The first term is positive since p, > p, and @n, > @n,, while the second and third terms are each separately

IS
I

3
5 -
anl

Thus, the right-hand side of equation (27) is positive, which is impossible, and the proof follows.
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