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RESUMEN

El presente trabajo muestra algunas aplicaciones de la teoria de las trans-
formaciones polinomiales al procesamiento digital de imagenes astrondémicas (re-
duccién de ruido, perfilacién y codificacidn). Para interpretar datos a partir de una
imagen astrondmica, es necesario obtener informacién explicita importante. Esto
usualmente implica la determinacién de las relaciones entre las intensidades de los
pixeles, lo cual requiere alguna forma de procesamiento local de los datos en toda la
imagen. Este trabajo se enfoca en el esquema basado para el procesamiento local de
la informacion en imdgenes astronémicas, llamado transformada de Hermite. Esta
transformada es un modelo de representacidn que analiza una imagen expandiéndola
localmente en una suma ponderada de polinomios ortogonales. Las aplicaciones que
proponemos se desarrollan sobre estructuras piramidales.. El propdsito es analizar
imdgenes astronémicas en longitudes de onda del visible, a diferentes escalas es-
paciales. Este método se ha aplicado a imdgenes dpticas astronémicas obtenidas
en el telescopio de 2.12-m en el Observatorio Astronémico Nacional en San Pedro
Martir, México.

ABSTRACT

Based on the polynomial transform theory we show applications for noise
reduction, deconvolution and coding in astronomical images. The proper interpre-
tation of an astronomical image, requires to obtain relevant information from the
structures contained in it. This procedure requires to process the data locally. For
our applications, it is required that the image data, which are given as an array
of intensity values, be interpreted into meaningful patterns. For this purpose, we
use the Hermite transform. This transform is an image representation model that
analyzes an image by locally expanding it into a weighted sum of orthogonal poly-
nomials. The applications that we propose are developed on pyramidal structures.
Their purpose is to analyze optical astronomical images at different spatial scales.
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1. INTRODUCTION

A problem in CCD astronomical images is the
masking of low-contrast features by presence of noise.
The problem arises since many of the more important
astronomical features are often composed of faint in-
tensity changes that do not conform sharp contours.

According to the Scale-Space theory (Koenderink
1984), these objects are best represented at low-
spatial resolutions. High intensity contours might
exist in astronomical images, for example in galaxy
nuclei which are unresolved from earth based tele-
scopes. An efficient noise reduction algorithm must
therefore, be able to process adaptively an image at
multiple spatial resolutions.
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A second problem in astronomical imaging is the
combined effect of the atmosphere, telescope and
camera limitations that results in a convolved point-
spread-function that seriously degrades the image
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quality. For the sake of simplicity, we will consider
this PSF as spatial invariant (the experimental re-
sults of the image processing algorithms presented in
this paper suggest that this assumption does not im-
ply serious errors). Relevant enhancement processing
techniques should therefore, deal with deconvolving
methods in order to obtain sharper images. If an im-
age includes noise, however, the deconvolution tech-
nique should be able to restore the best image, i.e., it
should deconvolve the locations of the image where
only relevant information (contours at different res-
olutions) is present.

Both noise reduction and image deconvolution
must be based on an image representation model that
incorporates multiresolution and adaptability to the
image contents. Several efforts towards this direction
have appeared in the last years with applications in
optical astronomy. An example of this approach was
developed by Richter et al. (1991) by means of a
resolution-adaptive filtering technique based on ap-
proximating the Karhunen-Loeve transform in non-
overlapping blocks within the image. This approx-
imation results in the so-called H-transform (after
Haar 1910) and has become a popular technique in
astronomical imaging. A known disadvantage, how-
ever, of any non-overlapping block-processing such as
the H-transform and the Discrete Cosine transform,
which is also a local approximation of the Karhunen-
Loeve transform, is the introduction of blocking ef-
fects. The technique presented by them overcomes
this problem by low-pass filtering the resulting im-
age. This, of course, blurs the final image, as will be
shown in § 6.

In order to avoid blocking effects, images should
be analyzed on a local basis by means of overlapping
analysis windows. For the analysis to be complete,
analysis at different spatial resolutions should be ap-
plied. This strategy is strongly supported by the
Scale Space theory. Based on this theory, a series of
multiresolution image models have emerged with ap-
plications in astronomy. This is the case of the work
by Starck, Murtagh, & Bijaoui (1995), who presented
general principles for designing processing techniques
for restoration, detection and compression with ap-
plications in astronomy, based on wavelet transforms.
More specific applications can be found in Bijaoui &
Rué (1995), where a wavelet-based model for astro-
nomical object detection is presented. Object fea-
tures are extracted from a multiscale image restora-
tion algorithm. Starck et al. (1996) proposed an
algorithm for astronomical image compression based
on a multiscale morphological transform. Their algo-
rithm achieves high compression rates by supressing
noise in an image. We show in this paper similar
applications.

We present specific algorithms for the restoration,
deconvolution and coding of astronomical images
based on the polynomial transform. This transform

is based on analyzing the image by means of over-
lapping windows, and representing the local image .
content as a sum of weighted polynomials that are
orthogonal with respect to the analysis window. In
the case of a Gaussian analysis window, the orthog-
onal polynomials correspond to the Hermite func-
tions (Szegd 1959). The operators used to obtain
the weighting polynomial coefficients can be shown
to be derivatives of Gaussian functions. These oper-
ators have been long used in computer vision in order
to efficiently detect primitive image patterns such as -
edges and lines, and have been identified as good
models of the response of retinal and cortical cells
(Young 1985). In the specific case of the first-order
derivative of a Gaussian, Canny (1983, 1986) showed
that this operator is close to the statistical optimal
edge detector. The scheme proposed in this paper
performs analysis with the polynomial transform at
different resolutions, i.e., using analysis windows of
different sizes. This will allow us to detect large and
smooth astronomical structures (e.g., clouds), as well
as sharp intensity transitions.

In this paper we show processing results of the
image enhancement techniques that we propose. We
present a comparison with other popular techniques
used in astronomy, namely median filter and H-
transform filter. A sample of the application of these
techniques in astronomical research is appreciated
in the Ha spatial distribution in barred galaxies by
Garcia-Barreto et al. (1996). The images presented
in this paper have been processed with the Polyno-
mial transform methods.

In order to show the potential of the polynomial
transform as a general tool for astronomical image
processing, we present in addition, deconvolution and
coding in a multiresolution analysis-synthesis struc-
ture. Coding in this case is implemented by a pre-
diction scheme that preserves only relevant informa-
tion (structures) while throwing away noise (Venegas
et al. 1995).

2. THE POLYNOMIAL TRANSFORM

In order to analyze an image on a local basis,
the image L(z,y) is multiplied by a window func-
tion V(z,y). This windowing takes place at several
positions (p, ¢) over the entire input image, compris-
ing a sampling lattice S. By repetition of the window
function over the sampling lattice, a periodic weight-
ing function W(z,y) is defined as

W(z,y) = Z Viz—p,y—q) . (1).
(p.9)es
Provided W (z, y) is nonzero, for all (z,y), we obtain

1
L(z,y) = m(p%s L(z,y) V(z—p,y—q) . (2).
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Within every window V(z — p,y — ¢q), the im-
age 1s described by a weighted sum of polynomials
Gmn-m(z,y) of degree m in z, and n — m in y. We
use polynomials that are orthogonal with respect to
the window function (Szegd 1959), i.e.,

400 +o0
[ ] vew
Gm,n—m(l'y y)Gl,k—l(I) y)dﬂ? dy = 6nk Omi ) (3)

for n,k =0,...,00,m=20,...,nand [ = 0,...,k,
where 6,  denotes the Kroenecker function. When a
Gaussian window is used, for instance, the Hermite
polynomials are chosen for the expansion.

The polynomial expansion within the window
V(z —p,y — q) is described by

V(z—p,y—2q)

L(z,y) — Z Z Linn-m(p,q) -

n=0m=0

Cmn-m(z—py—q)| =0 . (4)

By multiplying eq. 4 by V(z —p,y — q) Gi p—i(z —
P,y — q), and applying the orthogonality condition
of eq. 3, we observe that the polynomial coeffi-
clents Lm n—m(p,q) belonging to the polynomials
Gmn-m(z — p,y — q), for all positions (p,q)eS of
the window function V(z — p,y — ¢), are derived by
convolving the input image L(z,y) with a filter

Dm,n—m(xa y) = Gm,n—m(_z: _y) Vz(_x: —'y) ) (5)

and selecting the outputs

Lm,n—m(?;‘]) =
+oo ptoo

/ / L(z,y) Dmn-m(p—z,9—y)dzdy , (6)
—00 J—00

at the positions (p, ¢) in the sampling lattice S, for
m =0,...,n and n = 0,...,00. In practice, the
maximum order of the polynomial expansion will be
limited to a finite number N. Figure 1 shows a poly-
nomial expansion of the optical image of galaxy Mb1
for N = 4. The Mb1 optical image was taken from
the examples given in the IRAF software package.

The mapping from the input signal to the weights
of the polynomials, henceforth referred to as the
polynomial coefficients, is called a forward polyno-
mial transform. A

The resynthesized image L(z, y) is obtained by the
interpolation process of the inverse transform, i.e.,
substitution of eq. 4 in eq. 2 results in

n

N
L(z,y) = E Z Z Linn-m(p,q)

n=0m=0 (p,q)eS
Pm,n—m(x -—p,Yy— Q) 3 (7)

where the interpolation functions are defined by
Prn-m(2,Y) = Gmn-m(z,y) V(z,y)/W(z,y) , (8)

for m =0,...,nand n = 0,...,N. The only con-
dition for the existence of the polynomial transform
is that this weighting function be different from zero
for all coordinates (z,y).

There are a number of parameters that have to be
chosen in the definition of a polynomial transform.
First, the type of window function must be selected.
The Gaussian window is a good choice. It is sepa-
rable and is rotationally symmetric. The Gaussian
window and its derivatives, which are the operators
of the polynomial transform in this case, provide an
adequate model for the receptive fields in the visual
system (Young 1985). The orthogonal polynomials
associated with the Gaussian window are the Her-
mite polynomials (Szegd 1959). The resulting poly-
nomial transform is called the Hermite transform,
and it can be shown (Martens 1990) that the analy-
sis filters in this case are given by

1 1

Dn-m(z,y;0) = N e o

Hn(a/0) Hoonlulo) exp | “EE2)] (9

where Hp(z) is the Hermite polynomial of degree
n in z. It is interesting to note that the func-
tions D n—m(z,y;0) are equal to derivatives of a
Gaussian (Martens 1990). Gaussian derivatives have
proven to be useful for detecting local features in im-
ages such as contours.

For a discrete implementation of the polynomial
transform, it is well known that the discrete counter-
part of a Gaussian window is the binomial window
(Martens 1990), i.e.,

1 T
Via) = 53 Chr (10)

for x = 0,..., M, where M is the order of the bi-
nomial window. The orthogonal polynomials asso-
ciated to the binomial window are the Krawtchouck
polynomials

n

Gn(x>=\,/—1:Z(~1>""“cx;_ic£ L

m
M k=0
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Fig. 1. An example of a single-scale polynomial-trans

o

form ex

Rt asr B ¥

pansion of the galaxy M51 is shown. The expansion was

obtained with a binomial analysis window of order 2. Each subimage represents the polynomial coefficients Ly m, where
the order of the polynomial n,m is indicated at the top of each frame. Subimage E) corresponds to the energy of the

first order coefficients, i.e., Lo 1 and L.

forn =0,..., M. For large values of M, the binomial
window approaches the Gaussian window, i.e.,

_Cx+M/2 _ 1

lim -
M VM2

M—oo 2M

z
exp|— | —=—= , o (12)

for z = —(M/2),...,M/2. A similar process turns a
Krawtchouck polynomial into a Hermite polynomial

. M 1 T
lim G, (z+— | = H, . (1
M—co < 2)” Varnl iz -

Since the binomial window is cofnpactly supported
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Fig. 2. A three-resolution polynomial-transform expansion of an astronomical image is presented. Level 0 corresponds
to the highest resolution, obtained with a binomial window of order 2. Resolution levels 1 and 2 were obtained with

equivalent window orders of 8 and 32 respectively.

(length M+1), the maximum order of the polynomial
expansion is M, and the resynthesized digital image
L(z,y) is identical to the original L(z,y).

The second important parameter to be set is the
size of the window function, also referred to as the
spatial scale of the polynomial transform. In our
case, we use a pyramidal coding structure, i.e., a mul-
tiresolution implementation of the polynomial trans-

form, this being equivalent to selecting multiple win-
dow sizes, starting with a small size for the first pyra-
mid level. See Figure 2 for an example of a multires-
olution polynomial expansion of the optical image of
galaxy NGC 1275. This image was taken at the 2.12-
m telescope at the Observatorio Astronémico Nacio-
nal at San Pedro Martir, México with an I filter and a
CCD camera and kindly provided by Carrillo (1995).
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3. METHOD OF DECONVOLUTION

Deconvolution is important in astronomical im-
ages, since the spatial limited resolution of the acqui-
sition elements (lenses, electronics, etc.), combined
with the atmosphere optical effects result in a con-
volved PSF. In this paper we will provide a solution
based on the Hermite Transform for the case that the
PSF be Gaussian-shaped. Although real PSFs often
do not obey this model, they can be fairly approxi-
mated to the Gaussian. Many, if not all, optical im-
ages have noise features in addition to the astronom-
ical objects. Some current deconvolution algorithms
do not consider simultaneously noise reduction and
deconvolution in the processing of the images. We
will effectively tackle this problem in § 5 by propos-
ing an adaptive deconvolution algorithm that adapts
the deconvolution degree to the image content. In
this section we will limit ourselves to present the de-
convolution principle that will be used in § 5.

Let us suppose that the function G(z,y) repre-
sents an image degradation system, such as the PSF
of a telescope. Then, the image L(z,y) convolved
with the function G(z,y), is

L'(z,y) = L(z,y) * G(z,y) . (14)

The polynomial coefficients of the convolved image
are then given by

Lo nem(P,9)
= [(L(z,9)*G (2, ¥))*Dm,n-m (2, ¥)1(p,0)
= [L(z,y) * (G(2,Y) * D n-m(z,¥)))p,0)

= [L(m7 y) * D;n,n—m(l" y)](p,q) ) (15)

where
D;n,n—m(x)y) = Dm,n_m(x,y)*G(:c,y) (16)

is the convolved analysis filter. In other words, the
polynomial coefficients of an image blurred by a
function G(z,y), obtained with the analysis filters
Dpyn—m(z,y), are the same as the polynomial co-
efficients of the unblurred image obtained with the
blurred analysis filters Dj, ,,_,(z,y).

Having the Hermite transform and if the G(z, y) is
a Gaussian convolving function with standard devia-
tion op, as is our case, then Kayargadde & Martens
(1994) showed that

/ . — .——1 "
Dm,n-—m(x)y)a) - ( 14 (03/0)2)
Dm,n—m(m)y;av 1+ (03/0)2) . (17)

It follows from this equation and from eq. 6,
that the Hermite coefficients of the convolved signal
L n-m(p,¢; o) are given by

0o = [t Y
mn-m\P, 4 0) = W
Lnn-m(p,g; 0/ 1+ (08/0)?) . (18)

This means that the Hermite coefficients of an im-
age after convolving with a Gaussian function with
spread op, obtained with an analysis window of
spread o, are the same as the Hermite coeflicients
of an image obtained with a window of spread

o =o\/1+ (op/0)? (19)
weighted by a factor (1/4/14 (op/0)?)".

This conclusion immediately suggests a deconvo-
lution algorithm. In order to recover the original
image L(z,y) from the polynomial coefficients of
the convolved image L'(z,y) the synthesis filters of
eq. 8 have to be designed using an analysis window
V(z,y;0'), where o’ is given by eq. 19, and weighted
by a factor (1/1+ (0p/0)?)*. Figure 3 illustrates
this deconvolution process for the image of the galaxy
M51 .

4. MULTIRESOLUTION NOISE-REDUCTION
SCHEME

The basic problem in noise reduction leads to a
compromise between smoothing noisy regions and
preserving the sharpness of important image fea-
tures. We tackle the noise-reduction problem by
explicitly making a systematic distinction between
edges and homogeneous regions so that the smooth-
ing process adapts itself to the image content. In
order to achieve this distinction, we have to analyze
locally the image. As shown in § 2, this analysis is
achieved by multiplying the image with overlapping
analysis windows. There are a number of conflict-
ing demands that have an influence on the choice of
the window function. The window size is limited,
at the low and the high end. If the window size is
less than the correlation length of the noise, smooth-
ing the noise within a window has little or no effect.
Increasing the window size beyond the point where
the smoothed noise reaches the visibility threshold
makes no sense either. The theoretical argument for
increasing the window size is that it allows the noise
spread to be reduced. Another reason is that it is
more reliable to make a decision between edges and
noise if the window size is large. A disadvantage
of increasing the window size is that the number of
coefficients needed to adequately reconstruct the im-
age grows with the window size, resulting in a high
computational cost of the algorithm. A more serious
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Fig. 3. An example of deconvolving with galaxy M51 is illustrated. b1, b2, and b3 represent images obtained by
successively convolving the image with a Gaussian filter with o = 2. d1, d2, and d3 present a successive sequence of
deconvolved mages. el, €2, and e3 represent the energy of the first-order polynomial coefficients at each resolution level.

disadvantage is that the presence of an edge inhibits
the noise smoothing in its neighborhood. Hence, a
band of unreduced noise occurs along the edges. In
order to reduce the width of the noise band, it is
necessary to reduce the window size, especially for
high-contrast edges. This is possible because high-
contrast edges can be reliably detected with small
windows.

We can conclude that an optimum noise reduc-
tion is not possible with a single window function.
It is preferable that the size of the window func-
tion be decreased for increasing edge amplitudes and
decreasing distances from the edge. A well known
technique for implementing such a variable-window
processing is to use pyramidal structures (Burt &
Adelson 1983).
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4.1. Signal Detection

As already pointed out, one of the advantages of
the Hermite transform over other transform-based
processing methods, is the fact that the operators
used to obtain the polynomial expansion are deriva-
tives of a Gaussian. The properties of these oper-
ators as efficient primitive-structures detectors are
well known in the literature (e.g., Hildreth 1983).
In particular Canny (1983) showed that the first
order derivatives of a Gaussian function are quasi-
optimal edge detectors. This means that the en-
ergy of the first-order polynomial coefficients can be
used to efficiently discriminate edges from noise by
means of a threshold operation based on the the-
ory of hypothesis tests for binary-decision problems.
This threshold is therefore, computed from the sta-
tistical properties of the thermal and photon noise
in the image and its propagation through the first-
order polynomial coefficients. The noise is consid-
ered signal-independent and modeled as stationary
additive noise with a Gaussian probability density
function (PDF) and zero mean. Based on the PDF
of the first order energy F in uniform regions

1 Eq
p(E1) = 752 €%P [—%'2‘] , (20)
we fix the threshold according to the desired per-
centage of noise rejection. In the case of noise with
different PDF, such as Poisson, etc., other expres-
sion for p(E7) will be found; however, the algorithm
strategy will not change. For more details on this
strategy, the reader can refer to Escalante & Martens
(1992). Experience has shown that expert users pre-
fer a threshold that reduces about 70% of the noise
contained in the image. More severe noise rejection
results in blurred images, while less noise rejection
still leaves the uncertainity of contour detection. By
means of this threshold operation the energy measure
is turned into a control image that provides informa-
tion regarding the position of relevant edges in the
image.

4.2. Description of the Algorithm

Figure 4 is a flow diagram that shows the mul-
tiresolution noise-reduction scheme proposed in this
paper. At each level of the pyramid the smoothed
image of the preceding pyramid level is taken as the
input. L(z,y) is the input image while L(z, y) is the
output image. Block A represents the forward poly-
nomial transforms. Although it is not strictly neces-
sary, the window functions at the different pyramid
levels will be identical. A subsampling factor of 2
will most often be included at each level, so that the
equivalent window size also increases by a factor of
2 for each successive level of the pyramid. Using the
first order polynomial coefficients, we obtain an en-
ergy measure in the block F as a noisy information

Ly
L(z, 2 iz,
@9) A |1y L rt| s [HaY
B _———— | %
E — Us le— Us
Iy
=2
Lo A |1y L, T4 5 —
Ly 2
E — Uz le—vo Uz
fN
L2
Ll A T4 L T4 s —
Ly
E ] U f— U1

Fig. 4. The multiscale noise-reduction algorithm is pre-
sented, where L(z,y) is the input image. Blocks A rep-
resent forward polynomial transforms followed by sub-
sampling with a factor T. Blocks S represent inverse
polynomial transforms preceded by upsampling with the
same factor T. Lg are zero-order polynomial coefficients.
Blocks E extract positions of contours from first-order
polynomial coefficients. Uy, Us and Us are input thresh-
olds. L(z, y) is the output image. Blocks U;, i = 1,2,3,
control reconstruction at each level of image resolution
by opening or closing the switches.

source from which we have to decide whether the in-
formation observed corresponds to an image feature
or to noise. This is achieved by means of the thresh-
old operation described above.

The block S represents an adaptive inverse poly-
nomial transform that reconstructs the astronomical
image L(z,y) with noise reduction only in regions
where edges were not detected (switches opened).
As the image is subsampled by a factor of 2 at each
pyramidal level, then the edges are analyzed at differ-
ent spatial scales resulting in a multiresolution noise-
reduction structure.

5. INTEGRAL PROCESSING SCHEME

As discussed in previous paragraphs, the polyno-
mial transform is a mathematical model for image
representation. One of its main characteristics is that
it locally decomposes an image in terms of patterns
that efficiently describe the different types of events
that occur in an image. In this section we intend
to show that this characteristic of the polynomial
transform results in an general tool for different im-
age processing applications. In the previous sections,
we have shown how deconvolution and noise reduc-
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tion can be achieved with the polynomial transform.
We present in this section a scheme that integrates
three different tasks: deconvolution, noise reduction
and coding, these being some of the most important
problems in image analysis.

All three applications have a common fundamen-
tal principle, i.e., signal must be discriminated from
noise in order to restore, enhance and preserve only
relevant image structures. As shown in the previous
sections, the polynomial transform is an adequate
tool for doing analysis as well as processing. We
show 1in this section a possible scheme for implement-
ing such a system. The adaptive algorithm for noise
reduction presented in § 4 will be integrated to this
system. Regarding the deblurring algorithm of § 3,
it will also be included in the system but in an adap-
tive fashion, so that deblurring will only take place
at positions where relevant information was found.

Relevant structure detection is achieved by means
of an algorithm similar to that presented in § 3, i.e.,
by thresholding the energy of the first-order coeffi-
cients.

We generate a set of binary images indicating
the positions of important intensity changes accord-
ing to the respective spatial scale at each level in
a pyramidal structure. All other positions of the
image are assumed to contain only noise and can
therefore, be represented with just the zero-order
polynomial coefficients. Higher-order coefficients are
set to zero in those positions. This operation im-
plicitly reduces the noise in the image. Informa-
tion entropy is therefore greatly reduced, i.e., sig-
nificant compression rates can be obtained by quan-
tizing these coefficients. The resynthesized image
is reconstructed starting from the lowest resolution
pyramidal level. Since high order coefficients were
set to zero in noisy regions, deconvolution will only
take place in regions where emission was detected.
This operation is repeated at each pyramid level.
In summary, the scheme proposes an algorithm that
allows to adaptively process an image according to
the scale-space representation of its luminance struc-
tures and noise. In Figure 5 we show a flow diagram
with the proposed pyramidal scheme for integral pro-
cessing. Blocks G, in Fig. 5 generate a Gaussian
pyramid from the original image L(z,y). Each block
represents the convolution of the input image with a
Gaussian function. After each block G, the image
is subsampled. At each pyramidal level, meaningful
image structures are detected by means of the blocks
E;. The original image is convolved with first-order
derivatives of a Gaussian function whose spread is
consistent with the resolution of the corresponding
pyramid level. Afterwards, the energy of these im-
ages is computed. In the case of noisy images, this
energy measures contributions from both signal and
noise. Therefore, we threshold the energy in order to
discriminate the location of intensity changes present

Gop A, So,805.0 |

E,

Gop As So1Seme

Liz,y Gop A, SurSumis v Llry)

Ey

Fig. 5. The scheme of integral processing is shown for 3
levels, where L(z, y) is input image. Blocks G, generate
a gaussian pyramid. Blocks F extract edge positions for
different scales. Blocks A, represent forward polynomial
transforms. Blocks Sy, Ssy 0 represent inverse polyno-
mial transforms. Binary images given by blocks £; and
the lowest the resolution image are sufficient to generate

output image L(z, ).

in the image from noise contributions. This is done
in a similar way to the procedure described in §4 in
blocks E;. The image at the top level is analyzed
with a forward polynomial transform represented by
the block A,. The regions where the thresholded en-
ergy image found relevant structures, pass through
the block S, o, i.e., they are deconvolved in order
to predict their representation at the higher next res-
olution level. The block S, » consists of a modified
inverse polynomial transform which considers both,
the spread of the convolving Gaussian kernel op and
the spread of the Gaussian analysis window of the
Hermite Transform o. All other regions are restored
to its original resolution level by means of the block
S,. Steps 3 and 4 are repeated for each pyramidal
level and the restored image L is obtained at the
highest resolution level of the pyramid.

Noise reduction is achieved due to the fact that
homogeneous regions without relevant structures are
resynthesized at the lowest resolution level of the
pyramid, while contours have been progressively de-
convolved according to its scale-space representation
(e.g., clouds and stars). :

In order to efficiently code the image in a trans-
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mission or storage system, the only necessary data to
reconstruct the restored data are the image at the
lowest resolution level of the Gaussian pyramid, and
the energy images (binary images) generated by the
block E; at each pyramid level. In this coding struc-
ture we code without preserving prediction errors. In
this work the algorithm is designed specifically for as-
tronomical images, that is, signals containing struc-
tures with a low frequency content (diffuse patterns)
and high frequency content (stars) with noise; there-
fore, the prediction error images would mainly con-
tain only noise information and very little structure.
Neglecting these prediction errors does not cause vis-
ible effects.

6. IMAGE PROCESSING RESULTS

In this section we show results of the previously
discussed image processing applications based on
polynomial transforms in astronomical imagery.

To efficiently restore a noisy image, we need to
discriminate image information from noise. In the
case of astronomical images we find different types
of structures (e.g., clouds and stars complexes) in
the same image. In order to see how efficiently our
method works, we have applied it to an optical image
where weak structures are hardly detected due to the
presence of noise. We have chosen the continuum-
free Ha image of the galaxy NGC 3783. The im-
age was obtained at the 2.12-m telescope in the Ob-
servatorio Astronémico Nacional at San Pedro Mar-
tir, México with a CCD 1024x1024 pixel camera.
(Garcia-Barreto et al. 1996).

In Figure 6a, we present a raw CCD Ho image
(NGC 3783). This image contains several diffuse pat-
terns masked by noise. This noise is most likely of
thermal origin or otherwise known as gaussian white
noise. The signal-to-noise ratio (SNR), not including
the nucleus, is about 0.98 dB. Including the nucleus,
the SNR is 45.25 dB. This difference is due to the
mean intensity values of the nucleus which are 2862
(arbitrary units), while the pixel mean values around
the nucleus (on the ring) are 17. The noise standard
deviation is 15. An astronomical study of nuclear
region perhaps does not need any previous denoising
process.

In Figure 6b, we present the Ha image of
NGC 3783 restored by the polynomial-transform
based method described in § 4. This image allows
us to clearly detect the contours of a possible ring
around the nucleus. In order to preserve high inten-
sity changes such as the nucleus contour, the image
was initially transformed by using a small size anal-
ysis window. On the other hand, regions outside the
nucleus need to be severely smoothed in order to de-
tect intensity changes. We used a four-level pyra-
midal structure in order to detect and restore low
contrast, as well as high contrast structures in the
image. The threshold parameters at each level of the

TABLE 1

STATISTICS OF DIFFERENT NOISE
REDUCTION ALGORITHMS

Image Mean Midpt Stddev Min  Max

Ba 19.59  15.01 7712 -5.542 2862
66 19.59  13.20 76.99 1.506 2862
6c 1841 15.01 54.59 1219 1931
6d 19.80  13.25 - 77.09 1.506 2862

pyramid selects the structures that are best detected
and restored at every spatial scale.

In Figure 6¢, we show the Ha image of NGC 3783
restored by a 9x9 median filter. This filter is widely
used in astronomical imaging; however, its ability
to reject noise is limited as it can be seen from the
figure. Furthermore, it introduces blocking effects
in the image. This image processing was used by
Forte et al. (1987) when showing the weak structure
outside the nucleus.

Figure 6d, presents the restored Ho image of
NGC 3783 using an adaptive filter based on the H-
transform (Richter et al. 1991). It rejects the noise
better than the median filter; however it seriously
blurs the image.

Table 1 shows the statistics of images presented
in Fig. 6 (object NGC3783 Ha); where Mean is the
mean value of the pixel distribution, Midpt is the es-
timate of the median value of the pixel distribution,
Stddev is the standard deviation of the pixel distri-
bution, Min is the minimum pixel value, and Max is
the maximum pixel value.

We note from Table 1 that in contrast to non-
linear filters (such as the median filter), adaptive lin-
ear filters, (such as those based on the polynomial-
transform and the H-transform methods), produce
images whose pixel mean, minimum, and maximum
values do not deviate from their corresponding values
in the original-image. This means that object’s en-
ergy emission is preserved during the denoising pro-
cess with adaptive linear filtering. i

The image processed by the polynomial transform
is sharper and shows galaxy structures that cannot
be seen in any of the other images, including the
original one, e.g., a bridge connecting the extremes
of the ring across the nucleus in the E-W direction,
almost perpendicular to the stellar bar. A study on
52 barred spiral galaxies processed with our algo-
rithm appears in Garcia-Barreto et al. (1996). Some
evidence of the existence of these unveiled structures
is also shown on that work.

Figure 7 shows the results of the integral process-
ing scheme proposed in this paper. At the top-left
the raw image (NGC3783Ha) is shown. Note that it
is degraded by blur and noise. At the lower-left the
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Fig. 6. Multiresolution noise reduction is presented. Where a) original image of the Ha continuum-free emission from

the barred galaxy NGC 3783, b) image processed with noise-reduction algorithm by means of polynomial transform,
c¢) image processed with median filter 9x9, and d) image processed with adaptive filter using local-to-noise ratio as a

function of decreasing resolution (H-transform method).

multiresolution reconstruction process is depicted. It
starts from lowest resolution level. Noise rejection
and deblurring takes place only in positions selected
by the binary images E1 generated at each pyramidal
level. At the top-right the final reconstructed image
is presented. A detail of this image can be appreci-
ated at the lower-right. The coding scheme involved

in this integral processing scheme (three pyramid lev-
els) resulted in a compression rate of 60:1. No quan-
tization stage was applied.

7. CONCLUSIONS

From the experimental results shown in the pre-
ceding section, we find strong evidence that multires-
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Fig. 7. The results of the integral processing scheme are shown. Top-left is original image, NGC 1275 (note that it is
degraded by blur and noise). Lower-left is multiresolution image reconstruction starts from lowest resolution level. Noise
rejection and deconvolution takes place only in positions selected by binary images F; at each pyramidal level. Top-
right is reconstructed image. Lower-tight is detail of reconstructed image. The coding scheme based on deconvolving
compressed 60:1 for three pyramid levels. No quantization was applied.

olution methods represent an efficient alternative to
process astronomical images. Many of these methods
share similar basic principles such as adaptive filter-
ing driven by the local image content. This is the case
of several methods based on the H-transform, the
wavelet transform (Mallat & Hwang 1992) and the

polynomial transform among others. These trans-
forms map the image from the spatial domain to
a different space defined by a specific set of basis
functions. Transforms like the H-transform produce
blocking effects. In order to overcome this limita-
tion the resulting image has to be blurred, which
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severely impairs the image quality. Other models,
such as the wavelets, use basic functions that con-
tain much ringing. The resulting expansion coeffi-
cients have a limited ability to detect and represent
meaningful image patterns such as contours. Efforts
to overcome this problem with wavelets have been
attempted by defining simpler basic functions, such
as first-order Gaussian derivatives (Mallat & Hwang
1992). However, due to the orthogonality condi-
tion of the wavelet transform, the process of invert-
ing this particular wavelet transform, i.e., the recov-
ery of the image from the coefficients results in an
extremely complicated procedure. The polynomial
transform provides an efficient representation image
model whose basic functions are related to deriva-
tives of a Gaussian function. These operators are
quasi-optimal contour detectors (Canny 1983). Fur-
thermore, the inverse transform is not ill-posed and
consists of simple interpolations.

In the case of image restoration from noise, the
polynomial transform showed that the noise can be
almost entirely suppressed while sharpness is pre-
served in important image features. This behavior
is very different from traditional linear methods, be-
cause they achieve noise suppression only by broad-
ening features significantly.

The multiscale feature of the algorithm allows to
analyze an astronomical image at several resolutions
in order to adapt the smoothing process to the posi-
tion and contrast of contours. This characteristic al-
lows us to include adaptive deconvolution in the same
scheme. Deconvolution will take place only in the re-
gions of the image where significant structures were
located at each spatial scale. The result is an im-
age with different degrees of deconvolution and noise
reduction, i.e., in image locations where only noise
was detected, smoothing occurred at all resolutions
while deconvolution at none; where low contrast fea-
tures were located, deconvolution took place at low
resolutions and noise reduction at high resolutions,
and in positions where high contrast features were
detected deconvolution took place at all resolutions.

In the proposed pyramidal scheme for integral im-
age processing, an image prediction from its lower
resolution version takes place at each level of the
pyramid. The prediction error consists mainly of
noise information. Most of this information must

be discarded, leading not only to noise rejection but
also to image compression. This compression algo-
rithm is especially useful for images with low SNR,
such as astronomical images of faint objects.

This work was partially supported by UNAM
grant DGAPA IN501095.
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