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RESUMEN

Se considera el problema de la simulacién de frentes de onda con distorsiones
producidas por la turbulencia atmosférica, utilizando las funciones de Karhunen-
Loeve, para el estudio de técnicas de alta resolucién espacial en astronomia. Se
encuentra una solucién analitica para el kernel de la ecuacién integral de Karhunen-
Loeve para el caso de la turbulencia de Kolmogorov con una escala externa finita.
Se consideraran dos modelos de escala externa: el modelo exponencial y el modelo
de von Karman. Se describe un generador que permite simular procesos aleatorios
isotrépicos en dos dimensiones. Se muestra que los dos modelos dan resultados
similares. :

ABSTRACT

The problem of simulations of the atmospherically distorted wavefronts, mak-
ing use of Karhunen-Loeve functions for the study of high resolution techniques in
astronomy is considered. An analytic solution for the kernel of the Karhunen-Loeve
integral equation is found for the case of Kolmogorov turbulence with a finite outer-
scale length. Two outer-scale models are considered: the exponential model and
the von Karman model. A generator allowing the simulation of two-dimensional
isotropic random processes with a given structure function is described. It is shown
that both considered models give nearly the same results.
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1. INTRODUCTION

The optical quality of earth based telescopes is never diffraction limited; this is due to two main reasons:
the atmospheric turbulence wavefront distortions and the intrinsic quality of the telescope optics which is, in
most of the cases, comparable to the atmospheric distortions (Roddier et al. 1994). Active optics has resolved
this last problem and, at the same time, reduced the cost of large telescopes (Wilson, Franza, & Noethe
1987). In order to obtain diffraction limited imaging of different stellar objects, despite the turbulence induced
atmospheric distortions, the speckle interferometry (Labeyrie 1970) and adaptive optics techniques (Babcock
1953) have been proposed. There are many examples of important astronomical results obtained at visible
wavelengths in speckle interferometry by different speckle techniques (Pehlemann, Hofmann, & Weigelt 1992;
Afanasiyev et al. 1992) and at the infrared by the use of adaptive optics (Rigaut & Gehring 1995; Roddier
et al. 1996; Close et al. 1997). There are many publications devoted to the theoretical analysis of these
methods (Roddier 1981; Alloin & Mariotti 1988; 1993). However, there are many problems where it is difficult
to apply a pure analytical treatment. For this reason, different types of simulators that allow the generation of
random wavefront distortions with given statistics, have been developed. These simulators are of help when,
for example, it is necessary to estimate performances of closed-loop adaptive correction where a complete
theoretical treatment becomes extremely complicated. Another advantage of simulations is the possibility to
analyze particular samples of the process of interest while a theory is always dealing with statistical quantities.
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It is usually assumed that the atmospheric wavefront distortions obey Kolmogorov statistics. This assump-
tion allows to simplify significantly a theoretical treatment and a simulation procedure as well. Firstly, an idea
of quasi-random simulations of the wavefront distortions has been proposed by McGlameri (1976) as follows:
at first, random phases are produced over the pupil, then the atmospheric statistics is introduced with proper
filtering by the Kolmogorov spectrum. However, this procedure has two drawbacks: low-order aberrations are
underestimated and a long time is required for simulations that make it less desirable for many applications.

Another approach has been developed by Roddier (1990), who used the Zernike polynomial expansion
of wavefront distortions to produce random wavefront samplings with Kolmogorov statistics. In this case,
a correlation matrix of Zernike coefficients is known from theory (Noll 1976), so application of a proper
numerical diagonalization procedure yields a new set of basis functions for which the expansion coeflicients
are statistically-independent. Actually, this procedure gives us a set of the so-called Karhunen-Loeve (K-L)
functions that are well-known in probability theory (Loeve 1955; Papoulis 1984). Such set of functions is
convenient for simulations because each coefficient can be generated independently. Firstly the K-L functions
for Kolmogorov wavefront statistics have been calculated by Wang & Markey (1978). In order to construct this
set, one needs to solve the homogeneous integral equation with a kernel given by the correlation function of a
random process to be simulated. An usage of these functions in computer simulations has been considered by
Cannon (1996), who developed a wavefront simulator applying a direct numerical solution of the K-L equation.

All the simulators above operate on the base of Kolmogorov turbulence model which involves a conception of -
infinite outer scale of the turbulence. However, recent experimental data (Bouricius & Clifford 1970; Clifford
et al. 1971; Coulman et al. 1988; Nightingale & Buscher 1991; Bester et al. 1992; Dekens et al. 1994;
Buscher et al. 1995) leads us to conclude that the outer scale has often a finite size ranging from some meters
to some tens of meters. Theoretical considerations show that under such conditions, the atmosphere affects
astronomical images in a different way than it would in the case of Kolmogorov turbulence (Voitsekhovich
1995; Voistekhovich & Cuevas 1995; Takato & Yamaguchi 1995; Winker 1991). The effect of finite outer scale
1s very significant in large telescopes and interferometric telescope arrays. Thus, one needs to consider the outer
scale-dependent turbulence models for adequate simulation of atmospherically-induced wavefront distortions.

The present paper describes a simulator which allows the generation of wavefront distortions for both the
case of finite and infinite outer scale. Such simulations are needed for modelling of the performance of modern
astronomical instruments: image quality to be obtained by large-size ground-based telescopes, adaptive optics
systems for big telescopes, long-based interferometry, speckle interferometry with partial adaptive correction,
etc. Two outer-scale-dependent models are considered: the von Karman model and the exponential model. The
K-L functions for both models are constructed on the basis of Zernike polynomial expansion. This approach
permits a reduction of the integral K-L equation to a system of linear algebraic equations for which the matrix
elements are expressed analytically in terms of hypergeometric functions. These analytical expressions are of
importance because they give the possibility of combining a desired accuracy with high speed of simulations.
The practicability of the simulator developed is illustrated by comparison of the simulation results and the
theoretical ones.

2. KARHUNEN-LOEVE FUNCTIONS AS A BASIS FOR MODELLING RANDOM PROCESSES

Let us assume that one needs to simulate two-dimensional turbulence-induced phase distortions S (7) at

the circular telescope pupil with radius B. Then, let S (7) be expanded over a set of some basic functions

A;("p") orthogonal over the unit circle

S(7) =Y et (7/R) M

5 d2p A (7/R) A (7/R> = TR%;; (2)

where 6;; is the Kronecker delta-symbol. Hereafter the subscript G denotes the integration over the aperture.
Taking into account the orthogonal properties (2), the coefficients a; can be expressed as

o= [ aps (7) A (7/R) (3)

Furthermore, let us choose the functions A; in such a way that the following condition holds
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(aia)) = X6, (4)

where A;; is the normalization factor.

The functions A; satisfying egs. (2-4) are called the Karhunen-Loeve (K-L) functions (Papoulis 1984) of the
random process S. According to the K-L theorem, the functions A; are found from the following homogeneous
integral equation (in what follows, K-L equation)

| &oBs (71,73) A (i/R) = XA (B3/R) (5)
R
where Bg is the correlation function of phase S.

The correlation function Bg associated with turbulence-induced phase distortions is always symmetric.
Hence, as it is known from the theory of integral equations, the eigenfunctions A; and eigenvalues A; hold the
following general properties: (i) The system of the eigenfunctions is complete; (i7) The eigenfunctions are real
and orthogonal; (i:7) The eigenvalues are positive.

These properties along with statistical orthogonality given by eq. (4) make the K-L functions to be very
convenient for modelling random process. Once the K-L functions associated with a given random process
are calculated, it is easy to generate samplings of this process taking the superposition of K-L functions with
random coeflicients (the standard variances of the coefficients must be equal to the corresponding eigenvalues
A)

In the general case, if one needs to calculate the two-dimensional K-L functions, a solution of the eq. (5)
turns out to be quite non-trivial. Nevertheless, the turbulence-induced wavefront distortions are assumed to
be isotropic (Tatarski 1961), and that allows reduction of the initial two-dimensional problem to the one-
dimensional case. Due to the isotropy the correlation function Bg in eq. (5) depends only on the separation
between the points p; and p3, i.e., Bs(p1, p2) = Bs(| pr — p3 |). Hence, the functions A; in polar coordinates
can be presented as a product of the angular and radial parts

Ai(P'/R) = L7 (p/R)O™ (9) (6)
where
cos(mep) i iseven, m#0,
O™ (p) = { sin(myp) i isodd, m#0,
1 m = 0. (7

The correlation function Bg can be written as (Voistekhovich & Cuevas 1995)

Bs(p1, p2) = 0.49r5°"® / %@, (5¢) exp [z p (;; - ,7;)] , (8)

where ®,, denotes the spectrum of refractive-index fluctuations, and ro denotes the Fried parameter (Fried

1966).

Substituting expressions (6-8) into (5) and calculating the integrals, we obtain the following one-dimensional
integral equation for the radial K-L functions L7 (p/R)

R
/0 LT (p1/R) K (p1, p2) pr dpn = X2 L7 (2 R) (9)

with the kernel K (p1, p2) given by

K (p1,p2) = 1.9671'7‘6—5/312—2/ dstsc Dy, (50) I (3¢p1) I (5202) , (10)
0

where J,,, denotes the Bessel function.
Then, let us find the functions L7} as a linear superposition of the radial Zernike polynomials R

oo

L7(p) = Y Bla/2i + 2R7(p) (11)

j=m

where
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(n-m)/2

" _ (—l)s(n——S)! n—2s
RXp)= ) 5 [(n+m) /2= sl {(n—m) /2= s]!" "

s=0
Substituting eq. (11) into eq. (9), multiplying the equation obtained by ps RJ*(p2/R) and performing the
integration over p; and p2, we get the following homogeneous system of algebraic equations for the coefficients

m
in

Y BTLAT = AL6L (13)
j

where

AT, = 3.92mR-2ry >3 (=1)(H=2m)/2(1 — §o,)(1 — §oj) /i + (G + 1)

X [ doese 1Py (3¢) Iy 1 (3R) Jisr (5R). (14)

Egs. (13‘,14) give us a closed-form solution of the integral equation (5) for an arbitrary isotropic spectrum
®,, of refractive-index fluctuations. So, we reduce the initial integral eq. (5) to the algebraic eigenvalue problem

(13). Once the matrix AT is calculated, this problem can be solved making use of the well-known numerical

methods (Press et al. 1988) that give us the needed coefficients 87", and eigenvalues A,,. In the next section
we consider the solutions of the problem of interest for several models of ®,, usually used in calculations.

3. KARHUNEN-LOEVE FUNCTIONS OF THE TURBULENCE-INDUCED PHASE DISTORTIONS

3.1. Kolmogorov Model

The Kolmogorov model is widely-used in calculations dealing with light propagation through the turbulent
atmosphere. The Kolmogorov refractive-index spectrum &, is given by

O, (5) = 5~ 1/3, (15)

Substituting eq. (15) into eq. (14) and calculating the integral we have the following expression for the
matrix A7

R \5/3
AT = 0.497 <2_> (=1)EH =221 = §6,)(1 = 80;)V/(E+ 1)(G + 1)

To
r(14/3)r (H52)
X . (j_H;N@) r (i-j-gll@) T (j+z'+223/3) )

where T’ denotes the Gamma-function.

(16)

Eq. (16) allows calculation of the K-L functions for the case of Kolmogorov turbulence. However, despite of
its extreme popularity, the Kolmogorov model does not work well enough when the effects of the outer scale of
turbulence become pronounced (Voistekhovich 1995; Voistekhovich & Cuevas 1995). The last situation appears
when the outer scale magnitude turns out to be comparable to or less than the size of the observation zone
(in astronomical applications, such conditions are met in the case of large-aperture telescopes or long-based
interferometry). For this reason, several outer-scale-dependent models have been suggested. All these models
are, in fact, empirical generalizations of the Kolmogorov one. However, despite their empirical background,
there exists many experimental evidences supporting the validity of these models (Bester et al. 1992; Dekens
et al.1994; Buscher et al. 1995). In what follows, we consider two frequently-used outer scale models: the
exponential model and the von Karman model. ) :

3.2. Exzponential Model

In the case of exponential model, the refractive-index spectrum is expressed as

Br(36) = 273 1 — exp (—52/2)] (17

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



1997RWKAA. . 33.. 1870

SIMULATIONS OF ATMOSPHERIC DISTORTIONS 191

where
He = 27T/L0,

and Lo denotes the outer scale of the turbulence.

The matrix AT, occurring in eq. (14) is expressed as

R 5/3 o i i
AT, = 0.497 (55) (=1)+3=2m/2(1 — §o,)(1 = 80;) /G + DG + 1) x

I (14/3)T (J:%/—“‘-) R\ H5 T (j+i;5(3 )
T (j—¢;17/3) T (i—j-;17/3) I <j+i-;23/3) - ( 2 ) msﬁ )

where 3F3 is the generalized hypergeometric function(.....) given by

i+j+3 i+j+4 i4+5-5/3
2 T 2 2

3k3 = 3F3( ;i+2,j+2,i+j+3;—%§R2) .

3.3. von Karman Model
The Von Karman spectrum is given by

-11/6

B (5) = (5 + 3}) (19)

We use the following relation suggested in Voitsekhovich (1995) between the parameters s and 3, of the
von Karman and exponential models

s, = 0.49¢, = 3.075/Lo. (20)
Calculating the integral in eq. (15) with the spectrum (18) we get
R\ /3 o
AT, = 19677 (;-) (=) =2m2(1 — §0,) (1 — 60j) v/ (i + 1)( + 1) x
’ 0

2-11/37(14/3) D (FH22)
I-\(j-—‘i-;l7/3)1—\( ’i—j-217/3)1—\(j+1:-;23/3)

(21)

717 11 1 i4j i—j 17 j—i 17 i+j 23 o ,
34(3’6’6’6 5 3 T2 T2 Tt )T

>i+j+2 T (i+gé+2) T (5/3;'_3')

-11/3 ”LR
(Roe) ( TG+ 2T +2)

2

2 2 2 7 2

The von Karman model is more popular than the exponential one. As it has been shown (Voitsekhovich

1995), both models give very similar results in calculations (one will see in the next section that the same

tendency appears also in our simulations). However, as can be seen by comparing eq. (21) to eq. (18), the

results obtained with the von Karman model have a more complicated mathematical form that makes this
model less convenient for applications.

3F4(2+J+3 Z+]+4 Z+J+ .Z+J+1/ 71’+2).7+2,7'+J+3;){12CR2).

4. SIMULATIONS: COMPARING THE THEORETICAL AND SIMULATED RESULTS

As it has been shown above (see eq. 4), the coefficients of the phase distortions expansion over the associated
K-L functions are non-correlated. This property allows the simulation of the phase samples taking the super-
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position of K-L functions with random coefficients whose standard deviations are given by the corresponding
eigenvalue A\, ,. Mathematically, it means that the ensemble of phase distortion S (p, p) is given by

S(p,p) = Z:;lZZ:O/\mYnK,’;" (p) [etm,n cos (M) + B n sin (mep)] (22)

where a5, B n are the normally distributed quantities with zero mean and unit variance.

The number of K-L functions needed for simulations depends on the type of the problem to be solved. This
number can be estimated theoretically or from numerical experiments. Our numerical experiments based on
the comparison of the theoretical structure functions to those ones obtained from simulations have shown that
approximately 100 K-L functions (N = 10, M = 10) in the case of middle class telescopes (3.5-m) are needed;
while this number has to be increased to 400 (N = 20, M = 20) for large telescopes. In what follows we refer
to the simulated results as the experimental ones.

The validity of simulations has been verified by comparing the experimental structure functions to the
theoretical ones. The following expressions for theoretical structure functions have been used (Voitsekhovich
1995). For the exponential model

5/3 2,2
P -5/3 S . PN :
Ds (p) = 6.88 (70) + 20.56 (¢07) [1 R (“6’ ;-2 )] ; (23)

and for the von Karman model

5/3 2 92 2
11 _ .
Ds(p) =688 (L) oF (i —;—22E) 4360 ero) %3 |1 =0 Fy ;1;—”2”k . (24)
To 6 4 6 4

Experimental structure functions were calculated by averaging over 2000 simulated samples. The results of
calculations are plotted in Figure 1. and Figure 2. The theoretical and experimental results can be seen to be
In good agreement for a wide range of outer scale magnitudes. The effect of the outer scale is well pronounced,
especially for small magnitudes of the outer scale, that can be seen comparing the Kolmogorov structure
function to the outer-scale-dependent ones. The above results support the conclusion that the simulator
developed is suitable for modelling atmospheric wavefront distortions for a wide range of ground-based telescope
systems.

As an example we present some simulations for the 6.5-m telescope project that will be constructed in San
Pedro Martir (México). We have simulated the atmospherically induced phase distortions for visible, near
infrared and infrared regions for different magnitudes of Ly. In these simulations we used only the Fried
parameter, 7o, that depends on the wavelength in order to select different optical regions. A seeing of 0.7" in
the visible has been assumed. That corresponds to 7o = 0.15 m in the visible region (A =550nm), rp = 0.25 m
in the I band (A = 850 nm), and 7o = 0.5 m in the near /R J band (A = 1500 nm). The recent experimental

800 - i3
4 Lo/ro=103 ] @ 10t Lo/ro=103
o 700 Kolmogorov model E o F Kolmogorov model
=} ——
© 600 - 2L
5 500 g 108 &
I.l=. 2 T 3 F ]

400 F Exponential model / u oL ]
e - / [
3 300f ! 1 5 10 3
- / = 3
] 3
3 200} © 3]
2 von Karman model 2
= L | 109 £ ]
n 1 & : 5

o f . . . .
3 6 9 12 15 18 102
p/ro p/Lo
Fig. 1. Phase structure functions. Initial parts. Fig. 2. Phase structure functions. Final parts.
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Fig. 3. Phase structure functions multiplied by ro/3 for ':'3 3«““5 "."".'

a 6.5-m telescope for different magnitudes of Lg.

Lo=7 m Lo=3.5 m

Fig. 4. Simulated speckle images for 6.5-m telescope in
the visible region (A = 550 nm) for different magnitudes
of Lo (ro = 0.15 m). Size of each image = 1.4 X 1.4
arcsec.

data show that Lo has a finite size ranging from meters to tens of meters, so we have made simulations for Lg =

3.5, 7, 15 and 1000 m. The structure functions normalized by rg/ 3 obtained from simulations are presented on
Figure 3. As can be seen, the finite Ly affects strongly the structure functions. It means that the finite Lo must
affect the point spread function and the images obtained by adaptive optic systems. The point spread function
PSF (— z) can be calculated using the fast Fourier transform (FFT) of the telescope complex function P

PR -
o ¢ 9.
B a3 S
2 .

ket

Lo=15 m Lo=1000 m Lo=15 m

Lo=3.5 m Lo=7 m Lo=3.5 m

Fig. 5. Simulated speckle images for a 6.5-m telescope in Fig. 6. Simulated speckle images for a 6.5-m telescope
the I band region (A = 850 nm) for different magnitudes in the near J band region (A = 1500 nm) for different
of Lo (ro = 0.25 m). Size of each image = 2.1 X 2.1 magnitudes of Lo (rg = 0.5 m).Sizeo feachimage = 3.8X
arcsec. 3.8 arcsec.
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exp {tS(p,9)} ,if p<R
P(pyp) = { . : (25)
0 af p> R
where S (p, p) is the simulated screen function.
In this form:
PSF (%) = IF lexp 1S (o, oI (26)

where F' is the Fourier transform operator.

With only one phase screen representing one short exposure time it is possible to simulate speckle images.
Typical speckle images obtained from simulations are presented in Figure 4, Figure 5, and Figure 6 for different
atmospheric conditions. It can be shown that the bright speckles concentrate on the center of image when Lg
becomes comparable to the diameter of the telescope.

5. SUMMARY

The method suitable for deriving of the Karhunen-Loeve functions for any isotropic spectrum of the
refractive-index fluctuations as a linear superposition of the Zernike polynomials has been presented. The
approach developed allows a reduction of initial integral K-L equation to the homogeneous system of algebraic
equations that gives the possibility to construct the K-L functions of interest with high accuracy. The analyt-
ical expressions needed for calculations of these functions have been presented for the cases of frequently-used
turbulent models: the Kolmogorov model, the von Karman model and the exponential model. The obtained
K-L functions have been used to develop the simulator that allows the modelling of the atmospherically induced
phase distortions for a wide range of atmospheric conditions. Statistical characteristics of the simulated phase
screens are in good agreement with theory. As an illustration, the results of modelling some properties of the

6.5-m telescope which is planned for construction on San Pedro Martir have been presented.
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