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RESUMEN

Se analizan cosmologias anisotrépicas en el marco de teorias escalares-
tensoriales de gravitacién. Se generalizan métodos algoritmicos previos con el objeto
de poder estudiar cualquier tipo de teoria acoplada no-minimamente.

ABSTRACT

Anisotropic cosmologies in general scalar-tensor gravitation —including non-
minimally couplings— are considered. Previous algorithm methods are generalized
in order to admit the study of any non-minimally coupled theory.
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1. INTRODUCTION

Scalar-tensor gravitation have proved to be a use-
ful tool in the understanding of early universe mod-
els. The first and best known case of such theories
is Brans-Dicke (Brans & Dicke 1961, BD) gravity,
in which there is a coupling function w(¢) equal
to a constant; ¢ being a dynamical field related
with the previous gravitational constant. More gen-
eral theories with other couplings have also been
studied (Bergmann 1968; Nortvedt 1970; Wagoner
1970). The interest on these theories has been re-
cently rekindled by inflationary scenarios (Fakir &
Unruh 1990; La & Steinhardt 1989; Steinhardt &
Ascetta 1990) and fundamental theories which seek
to incorporate gravity with other forces of nature.
Particularly, in string theories, a dilaton field cou-
pled to curvature appears in the low energy effec-
tive action (Fradkin & Tseytlin 1985; Callan et al.
1985; Lovelock 1985). When scalar-tensor gravita-
tion is concerned, one is interested also in the cos-
mological models it leads. Observational constraints,
mainly coming from the weak field tests (Will 1981)
and nucleosynthesis (Serna, Dominguez-Tenreiro, &
Yepes 1992; Casas, Garcia-Bellido, & Quirds 1992;
Torres 1995), put several bounds upon the couplings.
In any case, in order to evaluate the cosmological

scenario and to test the predictable force of any
theory, it is desirable to have exact analytical so-
lutions of the field equations. But it was only a
few years ago, that Barrow (1993), Barrow & Mi-
moso (1994), and Mimoso & Wands (1995a) de-
rived algebraic-numerical methods that allow exact
Friedmann-Robertson-Walker (FRW) solutions to be
found in models with matter content in the form of
a barotropic fluid for any kind of coupling w(¢).
However, scalar-tensor theories can be formulated
in two different ways depending on the choice of the
basic action. These two possible choices are the BD
one, in which there is an arbitrary function in the
kinetic term of the scalar, and the one which ad-
mit an arbitrary function multiplying the curvature
while mantaining a common kinetic term, for the
theories known as non-minimally coupied (NMC).
Via a field redefinition one can establish the equiva-
lence between these choices. But if the functions in-
volved are not analytically invertible as, for instance,
in the hyperextended inflationary scenario (Liddle &
Wands 1992), we are left without any analytical algo-
rithm technique in order to get the solutions of the
system. Very recently, we have presented a study
on the full lagrangian density for the field, which in-
volves, in the more general case, two free functions
(Torres & Vucetich 1996). This lagrangian reads
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L =167L,, — (¢) $ u6" + G(g)™" (1)

where, as usual, L,, refers to the matter lagrangian
density and R is the curvature scalar. Each pos-
sible choice of the action may be reproduced by a
convenient selection of G and/or w. We have called
hyperextended scalar-tensor gravitation (HSTG) to
the theories of gravity that this lagrangian leads, be-
cause of the similarity with the inflationary model.
Similar algorithm methods of massless scalar fields,
developed by Mimoso & Wands (1995a), were ap-
plied to this general approach. Those methods al-
lowed to compute exact FRW analytical solutions in
vacuum, or with matter content consisting of radi-
ation or stiff fluids for any choice of G and w si-
multaneously (Torres & Vucetich 1996). That in-
cludes the cases of NMC, where solutions are scarce
(Capozziello & de Ritis 1994). This approach was
also used in the search for slow-roll solutions for non-
minimally coupled theories (Torres 1997).

Anisotropic homogeneous cosmological models are
being intensively studied for quite a long time (Mac-
Callum 1979). In particular, within scalar-tensor
gravitation, the analysis of anisotropic cosmolo-
gies could reveal different behavior when compared
with Einstein General Relativity near the singular-
ity (Ruban & Finkelstein 1972), or in the inflationary
epoch (Pimentel 1989). Processes of isotropization of
Brans-Dicke Bianchi-type solutions are also of cur-
rent interest (Chauvet & Cervantes-Cota 1995).

The aim of this work is to explore, within the
general lagrangian density of HSTG, the case of
some simple anisotropic cosmological models. In
particular, we are interested in examining the pos-
sibility of extending previously derived results for
anisotropic models in BD gravity to this general ap-
proach; allowing, for instance, to compute also an-
alytical anisotropic solutions for non-minimally cou-
pled theories. Throughout this work, then, we draw
on the results on massless fields in anisotropic uni-
verses (Mimoso & Wands 1995b) and in the proper-
ties of the lagrangian (equation 1) when considered
in the Einstein frame. A recent study of the cos-
mological conformal equivalence between the Jordan
and the Einstein frame was presented by Capozziello,
de Ritis, & Marino (1997). The leading idea of this
equivalence is to make a transformation of the dy-
namical fields so as to simplify the equations, i.e.,
to recover their Einstein form. Once the solution is
obtained in that simplified picture one can go back
and translate the results to the physical metric in
the Jordan frame. This procedure allows us to adapt
General Relativity solutions to more general scalar-
tensor theories.

2. EXTENDING THE FORMALISM
The field equations of HSTG are?

g(ﬁ,# ¢uu

1

20+ (G - gwu(a-l)] L@
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¢ [¢d¢ PP R
3G df;lm(a-l) e di;sﬁ —0. (3)

It is very important to remark that the usual rela-
tion T#., = 0 establishing the conservation laws (in
the meanmg of GR) of the matter fields holds true.
Note that when G = 1/¢, these equations reduce to
the common BD ones. The Einstein frame was intro-
duced by Dicke (1962), when working in Brans-Dicke
gravity, by defining a conformal transformation of
the form

gab = G0¢gab ) (4)

where Gy is an arbitrary constant which becomes the
gravitational constant in the transformed frame. In
a similar fashion, we introduce

Jab = GOG(¢)_lgab . (5)

Using the relation between the curvature scalars of
the common —Jordan— frame and the transformed —
Einstein— frame, given for all conformal transforma-
tions by Synge (1960), we get for the action

1

SBr = 164

- 1 - a 3
/\/__g [C;_OR_gabdj,d’fbﬁa{- 167I'L ] 3 (6)

where we have defined Ly, = L /(GoG(¢)™1)2. Tt is
now possible to define a new scalar field ¢ by

d¢

W=\ 162G, %3 (™)

1Equation (3) is obtained assuming that ¢ depends
only on time.
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such that

1
SEF_16_71'

/\/—_ﬁ[GLORJ“ 167r(f/m—%1/),az/)'“) . (8)

Thus, we recover the Einstein action with a stress
energy tensor given by the sum of two contributions,
matter, and scalar fields. It is worth noting that
the scalar field v is proportional to the variable Y
which was introduced to solve the problem of FRW
models in Torres & Vucetich (1996). The recovery
of the Einstein action —and the field equations de-
rived from it— does, however, have a cost. That is,
a non-independently conserved stress-energy tensor
for matter, which in the Einstein frame behaves in
agreement with

@ _ 1 [167Go 1 - idG‘l)
Ta” =35V 73 aT'/’?”<G-1 ) ©

So, in any case in which T # 0, only the total stress-
energy tensor will be conserved, i.e., (Tg3+7 aﬁ);“ =0;

where f’;@ stands for the stress-energy tensor related
with the field, which is given by

T, “ = (Yt - lI/J,cil)’cﬁab - (10)
( 2

Equation (10) and cosmological assumptions for the
field show that, in the Einstein frame, it behaves as
a stiff fluid with density and pressure given by

~¢_~¢~l<d_¢>2
Pt =olg) (11)

Due to the exact reproduction of the the Einstein
field equations, the common results of general rela-
tivity will apply. We shall take into account mat-
ter given by a barotropic fluid, particularly in the
cases of stiff fluids, radiation, or both. The case of
a dust fluid plus radiation in scalar-tensor theories
was analyzed by Torres & Helmi (1996), while some
cases of imperfect fluids were studied by Pimentel
(1994). Following Raychaudhuri (1979), and consid-
ering those models in which the velocity of matter
is parallel to the unit normal to the spatial hyper-
surfaces (a geodesic time-like vector ¢%) it is possi-
ble to write the Einstein field equations —the HSTG
equations in the Einstein frame— in the form of a
constraint

02 = 247Go(p + p¥) + 35° — g 3R, (12)

plus the Raychudhuri equation

Here, we have introduced the expansion 6, the shear
& and the curvature scalar of hypersurface of homo-

geneity 3R; all them, in the Einstein frame. The
transformed quantities are

o
(GoG(8)~1)*”

p

P= GG

5=

2

= GG

g

di? = (GoG(¢)™1) dt*, (14)

we also introduce a volume factor V =
(GoG(¢)™))** V, with V such that 6 = dV/Vdt.
Having available both conservation laws, for mat-
ter in the Jordan frame and for matter plus field in
the Einstein frame, it is possible to derive the corre-
sponding energy densities and pressures. They are

n MGoG(¢)_1) ’ (15)

_ 3 r
P= 3Gy \ /s T2

.3 [ T MGG($)
P= 52Gs (3174/3 72 o (18)

3 (A AMGyG(9)™!
- 87I'G0 4[72 ' (17)

Here, I is related with the presence of radiation and
M with the presence of a stiff fluid. Both, I' and M,
are positive constants. When a stiff fluid is present, it
is possible to define a new field x, minimally coupled
to the metric, such that its energy density is the sum
of the energy density of the scalar ¢ and the matter
content. This field x can be related to ¢ by (Mimoso
& Wands 1995b; Torres & Vucetich 1996)

di

167G
—x(#) =4 T=*

3

A2 d¢
/ \/A2—4MG0G(¢)‘1 Ve g 9)

We see that, defining a new set of functions (G, w)
by
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AZ
Ayae = Az -—4MG0G(¢)"1Q

the effect of stiff fluid matter is equivalent to a new
lagrangian with no matter content. That change is
possible because the stiff fluid modifies the depen-
dence of x with ¢, work that in vacuum models is
accomplished by w and G. That was exactly what
happened with BD models, where only w existed.
Here also, the field equations become simplest with
the use of the variable X = (GoG(4)™!)a® = a2
and the conformal time dn = adt (Torres & Vucetich
1996). Let us treat in this formalism and as a first
example, what happens with Bianchi I universes.

- (19)

3. A SIMPLE EXAMPLE: BIANCHI I UNIVERSE

The metric of Bianchi I models is
ds? = dt? —a; (t)?dz? — ax(t)?dy® — as(t)?dz? . (20)

Here, the Jordan frame expansion is given in terms
of an averaged scale factor a® = a1aza3 = V in the
form 6 = 3da/adt. The spatial curvature is null and
the metric reduces to the flat FRW one for the case
in which a; = a3 = az. The general relativistic result
for the shear holds in the Einstein frame; i.e., 7?2 =
3%.2/4a5, where ¥ is a constant and @ = V. Using
the expressions for the energy densities, it is possible
to obtain the constraint equation in the variable X.
For matter given in the form of non-interacting stiff
and radiation fluids in the Jordan frame, it is

X'?=A? 4+ 22 44TX (21)

where as before X = @2. It has exactly the same form
that the equation obtained in (Mimoso & Wands
1995b) and thus it admits the same solution (equa-
tion [105] of that paper)?. Equation (21) is in fact
a general relativistic result, valid here because of the
Einstein frame (Ruban 1978). It is important to
stress that, although the equation and its solution
are the same, the meaning of the variables are differ-
ent and that the study of the more general case of
lagrangian (equation 1) is now allowed. The solution
of (equation 21) shows shear-dominated evolution at
early times (@* — 0) and radiation-dominated evolu-
tion when the averaged scale factor tends to infinity
(@ — 00). Note that these results do not depend on
the particular form of G nor that of w. The specifica-
tion of X, the shear, and each one of the scale factors
of the metric —which can be obtained from the gen-
eral relativistic results in the Einstein frame— de-
scribe the full evolution of the system. To go back to

2X =@ = |n - nol (VAZ+ 2% +T|n — nol).

the Jordan frame, we have to know ¢(n) by inverting
(equation 18) and obtaining #(x). Afterwards, we
use our knowledge of X (n) to get x(n). Both oper-
ations yield finally, ¢(n). From equation (18) we see
that for an equal functional form of a4, an equal
solution for the field ¢ is obtained. Indeed, it means
that if a solution for ¢ in a particular BD gravity with
W = Wyqc 1S known, it is also a solution for the set of
theories given by ayge = (2Wyae + 3)/3. Thus, it is
possible to define a,,. as a classifier of equivalence
sets. Within each one of these sets, the definition
of X allows us to obtain the particular behavior of
the averaged scale factor. The functional form of the
metric scale factors does not depend on w or G in the
Einstein frame, while it does in the Jordan frame. It
is in this frame where a particular dependence of G
on ¢ discriminate among different behaviors inside
an equivalence set. As was the case in BD gravity,
some conclusions may be obtained without the spec-
ification of the functions involved in the lagrangian .
density. In the presence of a stiff fluid in the Jordan
frame, a bounce will occur when

22 <§ - G(G-l)’) =0, (22

which requires

(A% + 2% a = (A2 —4MG,G™1) <%%> . (23)

It may be also seen that, if G~! vanishes faster than
X3, an anisotropic initial singularity in the Einstein
frame becomes isotropic in the Jordan frame. Note
that the condition for the bounce is incompatible
with a vanishing G=! and X . The possibility of hav-
ing a finite expansion in this situation was analized
for BD gravity (Mimoso & Wands 1995b). As the
formalism here developed is based on the exact re-
production of the equations, via a suitable change of
variables, the analysis provided in the BD case will
continue to hold. For the sake of conciseness we do
not go through it in depth but refer the interested
reader to Mimoso & Wands (1995b).

4. CONCLUDING REMARKS

The above analysis implies that the algorithm
method developed by Mimoso and Wands for Brans-
Dicke theory is capable to deal also with Bianchi I
models in general hyperextended theories. As a mat-
ter of fact, one can —at this stage— observe that the
same applies to other models, such as Bianchi V or
II1. Those models are studied by Ruban (1978) for
General Relativity and by Mimoso & Wands (1995b)
in BD gravity, and to analytically obtain NMC solu-
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tions in this same way it is only necessary to translate
that analysis to the variables X, ¢ and to equations
(18) and (19) of this work.

It is important to stress that the formalism pre-
sented here as well as in Torres & Vucetich (1996)
does not mean that BD and NMC theories are not
equivalent via field transformations; something that
has been known for a long time. On the contrary, it is
to be noticed that whenever non-invertible functions
are used, these transformations cannot be performed
analytically and then, the algorithm procedures that
allow us to find solutions cannot be applied. It is in
these cases that a HSTG scheme is convenient.
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